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Improving prediction of space weather disturbances -

what is needed?

[Space Weather
work
€ather European
g vork ik opani e
83, ESTEC, Noordwijk

Rainer Schwenn
Max-Planck- Institut fir Aeronomie
Lindau, Germany
Let us inspect the the three bre

E asic u nding, prediction r ility,

. Electromagnetic radiation from flares 1. Electromagnetic radiation from flares

ible light, EUV, X-rays, Gamma- rays Pl G EXereil 7

poor
ear, but under intense study..
multaneously
Significance
Needed: * Fundamental re

* High time res
* Search fo

and i
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2. High energy particles from flares and CME shoc

Propagation of shock waves from the Sun towards Earth
Where and how are they accelerated/decelerated?
Answers might come from radio wave observations,
especially for improving space weather forecasts
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2. High energy.particles from flares and CME shocks 3. Low to medium-energy particles, plasma clouds
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3. Low to medium-energy particles, plasma clouds 3. Low to medium-energy particles, plasma clouds
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Halo CMEs

Expansion speedvs travel time

03.09.2001

© imbewns
P Public Eervice
s ~wlormer
Ll LR L
sarm o 13 larss, 1O

travel time (h)

“u

o

'\-:._"&__‘_h_ .
"\-.._‘_\_"_-_u:._,_____‘__:

S Vi e - S0 1000 10 2000 z© 3000 3 000 ° 1500 © 2000 2500 3000
g prieed oy wrlny - 5 | halo front speed (km/s) halo expansion speed (kmis)

3. Low to medium-energy particles, plasma clouds 3. Low to medium-energy particles, plasma clouds

Prediction accurrac
Conclusions from recent studies of CME/ICME correlations on orientation often dubious
surprisingly lo
A good correlation between ve,and the travel time to 1 AU was found g : S gly
from 102 events observed from1997 to 2001, : b = e Nt Al P —
Measuring v, for halo CMEs allows to prech E@ltime to 1 AU. mechanism of CME S
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There is still substantial uncertainty, indica esses occurring
during the “trip” of theCMEs from the Suf play an important
role
7 out of 181 full front side halo CMES new
3.9% false
6 out of 145 transient shocks were nog
4.1 % shock predictions missed!
1 out of 30 intense storms and 4 out of 78 noderate storms were not
related to any CME -
6 % storm prediction missed!

All very intense storms ( -200 nT) were related to halo CMEs.
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3. Low to medium-energy particles, plasma clouds

Needed: * A dedicated spacecraft at L1 (or closer to theSun!),
carrying:
an EUV/X-ray imager oftheSun,
a sensitive coronagraph, for quantifying halo CMEs,
acomplete set of standard particle and field instruments,
a MDI type instrument to MONIEOIN interor.

* A space weather warning center GRRSER equipped

with real-time datalinks both to it in orbit
and to the modelling computersy ear-real-time
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A NES cloud at 1 AU
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The Sun and global warming of the Earth?

Potential causes: 1. Long term variations in total irradiance (“total energy”)
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isassumed to only explain part of the global warming.
Long term variation in UV/EUV radiation changes
chemistry (ozone!), temperature ete. in the Earth's
atmosphere.
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Research topics for the future:
Triggering CMEs?

* How to predict CMEs/flares before they
occur?

Sigmoids?

Two small comets were evaporating near the Sun.
A few hours later a huge ejection occurred. Coincidence?

E No, says Dan Baker!
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Triggering CMES?

« How to predict CMEs/flares before they
occur?

« Topology evolution: from CMEs to
interplanetary clouds?
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* How to predict geoeffectiveness? i 7 1 e How to predict geoeffectiveness?

Better models/observations of CME i
propagation towards Earth.
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Space weather experts:
remember the fundamental law for

How to predict CMEs/flares before they
occur?
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How to predict geoeffectiveness?

Better models/observations of CME 'L
propagation towards Earth.
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