

# Outline

- The physical scenario
- Previous results on the prediction of the geomagnetic indices
- The ANN architecture
- Some preliminary results
- Conclusions



#### Some previous results

In the past different approaches have been applied to study the solar wind-magnetosphere-ionosphere (SWMI) coupling:

• statistical correlative analyses (Baker, 1986)

• linear filtering (McPherron et al., 1988)

• nonlinear filtering (Klimas et al., 1992; Goertz et al., 1993)

• artificial neural networks - ANN (Lundstedt, 1992; Wu & Lundstedt, 1997; Takalo & Timonen, 1997; Gleisner & Lundstedt, 2001; Lundstedt et al., 2002).

Most of the previous work was devoted to the prediction of geomagnetic indices (i.e. AE and DST) as a function of solar wind parameters.

#### Our task

We intend to build a service based on ANN to forecast Dst and AE based on ACE Solar Wind data.

In this presentation we will concentrate on the Dst index prediction.











## The various tests performed

In our simulations we made several tests as regards:

· the input variable set;

• the number of neurons in the hidden layers;

• the µ parameter, i.e. the inertia of the weight coefficients as a function of learning step;

• the learning rate parameter  $\eta$ ;

### The input data.

As input variables we used WIND and ACE magnetic and plasma parameters from the OMNI dataset.

Different methods for selecting the training set were used.







