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ABSTRACT

The paper presents a short review of various directions
of Artificial Neural Network (ANN) applications to
modelling of near Earth space radiation distribution and
dynamics and to the development of some methods of
space weather forecasting. ANN models may be based
on well-known physical laws or on some empirical
rules. We can present four main directions of ANN
applications. The first one is the development of strong
non-linear quasi-stationary models with large number of
input nodes. The examples of results in the first
direction are: 3D model of the Earth's magnetopause
and mapping of the near Earth high energy particle
(electrons and protons) distribution. The second
direction is modelling of cumulative and time shifted
effects in the time series. The main problem in these
models is searching the most significant measured
physical parameters as input nodes and determination of
the most appropriate time intervals for averaging or
shifting parameter values. This direction permits to
develop dynamical models of physical processes in
multi-parametric time series. One of the models
developed in the second direction is the model of the
slot region of Earth's radiation electron belt dynamics
depending on the solar wind conditions. The third
direction is modelling of self-consistent time series by
means of recurrent ANNs. These models take into
account the information about prehistory of the system
dynamics and hence they may be used for forecasting.
The models forecasting sunspot number and average
solar wind conditions are excellent examples of
investigations in the third direction. The fourth direction
is combination of the described directions by means of
global ANN on the base of some classification rules
which may be used in future for the development of an
expert system for the space weather forecasting.

INTRODUCTION

Artificial Neural Networks (ANN) are very powerful
algorithms that may be used to construct empirical
computer models of non-linear physical phenomena.
These algorithms successfully operate with large
volumes of noisy data. ANN are used in solar-terrestrial
physics very efficiently. Self-Organising Maps (SOM)
[Lippman, 1987] are applied for classification of data to
distinguish independent processes in complex dynamics

of physical systems [e.g. Wintoft, 1993]. The prognoses
in time-series of geomagnetic indexes (Dst, Kp, AP,
etc.) are generated using Elman Recurrent Neural
Networks (ERNN) [e.g. Wu, 1996]. Multi Layer
Perceptrons (MLP) [e.g. Liszka, 1993; Lundstedt, 1996]
or General Regression Neural Network (GRNN)
[Dmitriev, 1997b] are used to develop complex multy-
parameter models in the solar wind magnetosphere
coupling system. Group Method of Data Handling
(GMDH) [Dolenko, 1996] presents ANN models in
analytical form.
This paper presents the overview of ANN applications
for the development of expert system for modelling and
prediction of the space radiation environment - firstly
the fluxes of high energy electrons and protons that
strongly affect the near Earth satellite's operation. We
use in this work the software ANN package Neuroshell
2 [1996].

1. MAPPING OF THE ENERGETIC PARTICLES
DISTRIBUTION IN THE MAGNETOSPHERE

A lot of experimental data about fluxes of energetic
particles at low altitudes (350-1000 km) is accumulated
in SINP MSU during the last two decades. The main
part of the data is loaded to the Low Altitude Space
Radiation Environment Data Base (LASRE DB)
(http://dec1.npi.msu.su/english/data/lasre/index.html)
which contains experimental information obtained
during five space experiments performed from 1979 to
present time. The data from one active experiment
"Riabina" onboard MIR station is loaded regularly in
the real time regime till now.
A large volume of accumulated experimental data
permits us to develop the models of low altitude
energetic particle distributions and dynamics of particle
fluxes. The intensity of low altitude radiation is
controlled both by the atmospheric density co-varied
with solar activity (long time variations) and by the
solar wind (SW) and interplanetary magnetic field
(IMF) conditions (short time variations). So the model
has to take into account many parameters with different
characteristic times varied from hours to years. The
model also has to describe the spatial and temporal
variations of particle fluxes up to four orders of
magnitude. It is important that the magnetosphere is
strongly non-linear system with current state depending
on its previous states (or prehistory). Therefore we have
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to develop a multy-parameter non-linear model. In this
case ANN is the best tool to solve this problem.
As a first step we use GRNN network to develop the
stationary model of the particle distribution under
certain conditions in SW and IMF and at a certain level
of solar activity. In the output node of ANN we use
logarithm of particle intensity to decrease the dynamic
range of variations in the flux magnitude. The input
nodes of ANN are the geomagnetic coordinates of the
point, local time of the measurements, and energy of the
particles. The level of geomagnetic activity is
determined via Dst-variation. The example of ANN
model calculation for >0.5 MeV electron intensity under
quite geomagnetic conditions (Dst>-50) is shown on
Figure 1 [Dmitriev, 1997a]. Different intensity is
presented by different density of shadow in the
magnetic longitude (mLon) - magnetic latitude (mLat)
coordinate system. The outer radiation belt is seen in the
Figure 1 as a practically strait line at mLat~±60°. The
inner radiation belt is located on the middle latitudes
between mLon~0° and mLon~90°. The slot region is
clearly seen at mLat~-50°. ANN model allows to
describe up to four orders of magnitude of spatial
variations of electron intensity. The correlation
coefficient of ANN model on the examination set (20%
of initial data set containing 13860 examples) is 0.96.
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Fig. 1  ANN model simulation of >0.5 MeV electron
intensity distribution at altitude 500 km under quite
geomagnetic conditions (CORONAS-I satellite data).

2. 3D ARTIFICIAL NEURAL NETWORK MODEL
OF THE DAYSIDE MAGNETOPAUSE

The precise knowledge of the shape and size of
magnetopause is very important for the description of
dynamics of the magnetosphere and particle distribution
inside. The dynamics of the shape and size of Earth's
magnetopause (MP) have not been studied yet by means
of ANN. We have used GRNN [Caudill, 1993] and
GMDH to develop a complex 3D model of the dayside
magnetopause [Dmitriev, 1997c]. At the first stage the
empirical MP model with a large number of input
parameters was created by means of GRNN. At the
second stage GRNN model is parameterised - the
number of input parameters is reduced in order to obtain
optimum between number of inputs and accuracy of the
model. At the third stage GMDH was used to represent

the model solution in the form of analytical expression.
We have to emphasise that our model was developed
without any a-priori assumption about the
magnetopause shape and about kind of its dependence
on the input parameters. ANN model permits to
represent the influence both of traditionally used
dynamics pressure P and Bz and of By IMF component
on three-dimensional geometry of the magnetopause
surface. The model may be applied in the extend ranges
of SW and IMF parameter values: By=-20÷20 nT; Bz=-
20÷20 nT; P=0.5÷40 nPa. The average relative
deviation is better than ≈11% in the wide range of the
model parameter variations. Figure 2 shows the
magnetopause shape both in meridian and in equatorial
sections. The model describes rather well the following
main features of MP surface: the cusp region, erosion
"dimple" near equator plane at Bz<-10 nT and dawn-
dusk asymmetry of MP shape.
We can see in Figure 2 that the minimal distance to MP
may change significantly from ~11 Earth's radii (RE) to
~6 RE. The magnetosphere boundary defines the last
closed magnetic line therefore ANN model describes
how the boundary of trapped radiation is controlled by
the interplanetary conditions.

 
Fig. 2. ANN magnetopause surface simulations in solar-
ecliptics coordinate system (GSE). Left panel is
magnetopause section in meridian plane (XZ); right
panel is section in ecliptic plane (XY). The model is
computed for By=0, P=2, Bz=5, 0, -5, -10, -15.

3. DYNAMICAL MODEL OF THE SLOT REGION
OF EARTH’S ELECTRON RADIATION BELT

The short time (hours) dynamics of relativistic electrons
in the slot region (SR) on recovery phases of recurrent
magnetic storms is modelled by means of GRNN
[Dmitriev, 1998]. The strong latitudinal shifts of the slot
location (from L=3 to L=2) and variations of electron
fluxes up to two order of magnitude in this region are
modelled by ANN as function of heliospheric
parameters. The initial data was obtained on low
altitude (500 km) highly inclined (82°) CORONAS-I
satellite during its operation in March-May 1994
(crosses on the third and fourth panels of Figure 3).
Table 1 shows best correlation coefficients and
corresponding integration times. The shaded values in
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the Table were used as input nodes of ANN. This
selection of input nodes may be not the best one, but it
was done because of the limited data set available for us
(116 measurements). The output node in ANN model of
SR location is logarithm of L-location of SR (ln(L)).
The input layer of ANN contains 11 nodes: local time
and magnetic field strength in the points of
measurements, IMF components (in GSM system), solar
wind velocity, logarithms of density, variations of
dynamical and thermal pressures (dPd and dPt), IMF
strength and solar radio flux (F10.7) (shaded in Table
1). The heliospheric parameter values are integrated in
91-hour interval preceded the moment of measurements,
the solar radio flux value is integrated in 10-hour
interval. The output node in ANN model of electron
intensity is logarithm of electron intensity in SR (ln(I)).
The input ANN layer contains 7 nodes: local time,
magnetic field strength and L-shell in the points of
measurements, logarithms of IMF components and solar
wind velocity with 157-hour averaged values. The
training, testing and examination data sets contain 72,
22, and 22 examples respectively. Therefore the hidden
layer of GRNN contains 72 neurons. The results of
ANN training are shown by rectangles on two bottom
panels in Figure 3. As one can see we have obtained
close agreement between ANN model and
measurements. The correlation coefficient on
examination set for SR location model is c=0.96 and for
the electron intensity model it is c=0.94.

Fig. 3.  Time profiles of (up to low) solar wind velocity
(first panel), Dst-variation (second panel), L-location
and >0.5 MeV electron intensity in the slot region
(crosses on the third and forth panels respectively). The
rectangles on the third and forth panels are the results of
GRNN calculations.

Table 1. Integration Time and Correlation Coefficients
Parameter ln(L) ln(I)

C T(h) c T(h)
Bx -0.2 10 0.85 134

By(GSM) 0.25 10 -0.81 159
Bz(GSM) 0.23 10 -0.82 140

ln(V) -0.33 25 0.843 125
ln(n) -0.32 108 -0.58 102

ln(dB) -0.33 92 0.64 161
ln(dPd) -0.57 91 0.26 96
ln(dPt) -0.61 91 0.28 139

ln(F10.7) 0.5 11 -0.32 144

ANN model represents the influence of fluctuations of
IMF components and plasma parameters of the fast
solar wind streams on the electron fluxes at low L-shells
(L~2÷3) on the recovery phase of geomagnetic storms.
Close agreement of developed ANN models with
experimental data allows us to conclude that the
dynamics of energetic electrons at low layers of
magnetosphere may be defined by the variations of
interplanetary medium conditions accumulated during
4-6 days.

4. SELF- CONSISTENT ANN MODEL OF
HELIOSPHERIC PARAMETERS

Elman Recurrent Neural Network (ERNN) is used to
model the dynamics of the heliospheric parameters:
Wolf number, F10.7 flux, solar magnetic field and IMF,
SW velocity, temperature and density measured on the
Earth's orbit during 1975-1997. The heliospheric data is
considered as self-coincident time profiles. To model
such kind of data we have to use information about
prehistory of parameter behaviour. Furthermore, we
have to take into account the influence of one
heliospheric parameter on the other, for example well-
known dependence of solar wind and IMF properties on
the sunspot number. To model this multy-parameter
non-linear dynamics the ERNN is most appropriate.
ANN used in our study has the feedback link from
hidden or output layer to input layer. The initial data set
contains monthly averaged values of the above
mentioned seven parameters. The data set was divided
subsequently into training, testing and examination data
sets contain 200, 40 and 39 examples respectively that
corresponded to following time intervals of data: 1975-
1990, 1991-1994(April) and 1994(May)-1997. So using
the ANN trained on the data from time period 1975-
1994(April) we try to describe the behaviour of
parameters in the minimum of XXII and beginning of
the XXIII solar cycle. The developed ANN model
permits to predict the monthly averaged values of the
parameters for the next month. The results of ANN
forecast of sunspot number W and SW velocity V are
shown in the Figure 4. The correlation coefficients on
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the examining set are: 0.67 for the sunspot number, 0.65
for F10.7 flux, 0.86 for the solar magnetic field, 0.47 for
IMF strength, 0.81, 0.56, 0.6 for the SW velocity,
temperature and density respectively.

Fig. 4  Comparison of experimental data (solid lines) on
solar wind velocity (upper panel) and sunspot number
(bottom panel) with ANN model simulation (dashed
lines) on examining set.

DISCUSSIONS

We have presented and discussed four ANN models of
different space physics systems that may be joined in
the global system of Space Weather. These models were
developed using different types of ANN. On this way
we have a problem: how to use the results of the
different ANN calculations to forecast the near Earth
radiation distribution. Figure 5 shows the scheme of
ANNs combination for this purpose. First, experimental
data about solar characteristics (W, solar magnetic field,
F10.7 flux) are used for prediction of SW and IMF
parameters by means of ERNN. Second, MP, SR and
probably some other magnetospheric parameters (if
necessary) may be obtained from calculations of ANN
models based on these predictions. Finally the results
are analysed by SOM network in order to select the
most appropriate map of the near Earth radiation
distribution.

Fig. 5.  Scheme of ANNs joining for forecasting of low
altitude space radiation distribution.
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