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ABSTRACT

Anomalies on geosynchronous satellites can be at-
tributed to the plasma environment. The possibility
of predicting anomalies will improve satellite oper-
ation. The presented method uses anomalies from
both the local and the non-local plasma environment
and is based on information from the two geosyn-
chronous satellites, Meteosat-3 and Tele-X. Space-
craft anomalies are relatively rare events and many
years of data are needed to give a large enough data
base. The prediction model is made using neural net-
works. The neural network is trained to give infor-
mation when there is a low or high risk for anoma-
lies. Using the model on di�erent satellites, thresh-
old values have to be selected for each individual
satellite. The time history for both the index and
the anomalies should be logged in order to upgrade
the threshold value. When the non-anomaly times
are predicted to 80 %, the Meteosat-3 model pre-
dicts about 55% of the anomalies. The unpredicted
anomalies are most probably caused by a mechanism
where other input parameters are needed. For Tele-
X about 80% of the anomalies are predicted with the
same criteria as for Meteosat-3.

Key words: satellites; space environment; prediction;
anomalies.

1. Introduction

Operating a spacecraft can be compared with a
long car ride, it takes time and can easily become
monotonous. The operator/driver can easily fall into
the belief that nothing will happen. If they can be
warned of bad weather, their senses become sharp-
ened and if something does happen they are ready
to act. When a storm warning goes out, the opera-
tor/driver can select to stop running things and/or
to protect against di�erent scenarios.

The �rst satellite in the Meteosat meteorologi-
cal satellite series (Meteosat-1) had problems with
anomalies due to the space environment (??).
Changes were made to the design of the following
Meteosat spacecraft (??). On Meteosat-2, an envi-
ronmental detector (up to 20 keV) was mounted to

investigate if the anomalies were caused by surface
charging. The analysis from the two Meteosat satel-
lites could not establish any causes for the anomalies
(??). Therefore a monitor (SEM-2) was mounted on
Meteosat-3 to measure higher energy electrons (??).

There have been many studies of the Meteosat
anomaly data set (??, ?? and references therein)
and other satellites (??, ??). In this study di�erent
sources are compared with each other to �nd good
input data for future prediction models.

2. The data

In order to make predictions, the input data have to
be accessed in near real time measured continuously
and over long periods. The models in this report
are trained to predict the anomalies on two geosyn-
chronous orbiting (GEO) satellites, Meteosat-3 and
Tele-X.

2.1. Anomaly data set

The Meteosat-3 was launched on the June 15, 1988
and put into junk orbit on November 21, 1995. This
anomaly data set is mainly associated with the ra-
diometer (the main instrument on the spacecraft).
During the 7-year mission, 18 di�erent types of
anomalies with a total of 724 anomalies (one anomaly
every �fth day) were detected. The second anomaly
data set is from the Swedish broadcasting satellite
Tele-X. This GEO satellite was launched on April 2,
1989 and put into junk orbit spring 1998. The satel-
lite operators reported 10 di�erent types of anoma-
lies, which were associated mainly with command
manager unit resets, spontaneously closing of the
latch valve and hanging of the on-board computer.
In the �rst 8 years of the mission, Tele-X operators
detected 192 anomalies, i.e. less than one every tenth
day. From the Tele-X anomalies in this study only
the anomalies during the second half of the Meteosat-
3 mission period are used.
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2.2. On board electron measurement

Electrons in �ve di�erent energy ranges (43 - 300
keV) are used from the SEM-2 instrument which was
mounted on the Meteosat-3 spacecraft. All analy-
sis in this report is based on when the SEM-2 in-
strument operated. The information from SEM-2 is
based on data �les with time resolution of 30 minutes
(the SEM-2 instrument had a time resolution of 8-10
min). In this report two-hour prediction resolution
is used based on two-hour resolution of the SEM-2
data.

2.3. Global geomagnetic data

From solar wind plasma and magnetic �eld measure-
ments global parameters such as Dst and Kp can be
predicted accurately 1 to 3 hours ahead (??, ??). Us-
ing Dst and Kp, instead of the solar wind parame-
ters, a continuous data set for the period of inter-
est could be created. The model can in the future
be used with the solar wind parameters instead of
the indexes. The Dst and Kp data are taken from
the web (http://nssdc.gsfc.nasa.gov/omniweb) and
recalculated to two hour resolution (linearly).

2.4. Other spacecraft

There are other satellites that measure the particle
uxes at GEO; in this study data from the NOAA
satellites GOES are used. Daily average data from
the electrons >2 GeV (higher energy than SEM-2),
and the lower energies for protons >1 GeV and >5
GeV are used (http://spindr.ngdc.noaa.gov:8080).
Data gaps have been replaced by linear interpolated
values, and when larger data gaps exist these time
periods have been removed from the data set manu-
ally.

2.5. Cosmic rays

High energy particles, such as cosmic rays, can pen-
etrate a spacecraft and cause SEU. If an anomaly
occurs due to the cosmic rays, it is more random
in nature. Only one energetic particle is needed
to cause the anomaly, whereas for charging, several
electrons are needed. Cosmic ray activity is con-
tinuously monitored (as neutrons) on the ground.
Therefore data from the Climax ground station
(ftp://ftp.ngdc.noaa.gov/STP/SOLAR DATA/-
COSMIC RAYS) are used. The data time resolution
is one-hour but for this analysis averaged to two-hour
resolution.

3. Prediction task

The model is built to be useful for a satellite opera-
tor. A satellite operator normally needs a warning of
increased anomaly risk at least one day ahead. The
model is created to predict whether an anomaly will
occur within the next 24 hours or not. The number

Table 1. Di�erent energies

train s/c train s/c other s/c

Input data s/c test % all % all %

highest energy Met 38 40 47
middle energy Met 39 40 50
lowest energy Met 39 39 49
all 3 energies Met 45 45 57
�rst principal Met 43 42 59
highest energy Tel 57 58 44
middle energy Tel 59 55 41
lowest energy Tel 57 55 40
all 3 energies Tel 61 62 43
�rst principal Tel 61 60 42

Di�erent energies from SEM-2 are compared with the �rst
principal component. All the data models uses input infor-
mation from the last six points, i.e. information from the last
12 hours. The models are either trained to predict Meteosat-3
(top part) or Tele-X (bottom) anomalies. Each trained model
is tested with three di�erent test �les: the test �le not con-
taining the training data, all data 'all', and other satellites' all
data 'all'. For more information see the text.

of false alarms must be low. The ratio for Meteosat-
3 between days with and without anomalies is about
1:5. Therefore days without anomalies must be cor-
rectly predicted to 80% (giving few false alarms). As
a result periods with non-anomaly will give as many
false warnings as the total number of anomalies (for
Meteosat-3).

4. The models and the presentation of the result

A non-linear approach is used; a neural network is
trained to �nd correlations between the input data
(the environment data) and the output data (the de-
sired output of the model). In this study a feed-
forward neural network with one layer, four neuron
back propagation learning algorithm is used.

The data set consists of about 27600 rows (based on
the two-hour resolution, and when SEM-2 was opera-
tional for Meteosat-3, the Tele-X data set is half that
size). Each column in the data set represents a value
from the di�erent input data. Logarithmic scales are
used when needed to give a more even spread in the
input data. The last column in the data set is the de-
sired output, one (1) if an anomaly occurred within
the next 24 hours, or zero (0) if no anomaly occurred.
One anomaly causes therefore 12 rows in the database
to be one (1), hereafter called warnings.

When the data set is created all the rows associated
with warnings are separated into one training �le
(66%) and one test �le (34%). The rest of the rows,
the rows associated with no anomaly '0', are �rst
randomly selected to be reduced to twice the total
number of warnings and then split into the training
and test �le. As a result, in the training and test �les
there are twice as many examples with no anomaly
as with warnings. Another data set is also used as a
test �le in the report. This data set contains all the
data, including the training �le (referred as 'all'). In
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this test �le 'all' is the examples in sequential order
and the number of warnings vs. non-anomalies is not
weighted.

The output of the neural network model is a real
value. Using the assumption that 80 % of the non-
anomalies should be correctly predicted, a threshold
value is selected. This result is presented in all tables
in the report, i.e. the success of predicting the warn-
ings when a threshold is selected so that the times
with no warnings are predicted to 80% .

Table 2. Di�erent environment data

MET MET TEL TEL

Row input data test all test all

1 PCA (two hour) 44 44 65 62
2 Kp 40 42 43 45
3 Dst 38 40 46 48
4 Neutrons 23 24 19 20
5 electrons 48 47 82 75
6 protons low 32 33 52 53
7 protons high 19 18 29 25
8 e+pl+ph 55 52 74 71
9 PCA (one day) 45 45
10 combination 54 56 82 76

The di�erent models tested have di�erent input data as fol-
lows. Rows 1-4: 2-hour resolution with a time window of 24
hours. Rows 5-7: 24-hour resolution with a time window of
10 days. Row 8: is using the last particle measurements from
GOES, 3 inputs. Row 9: 24-hour resolution with a time win-
dow of 7 days, to be compared with row 1 and 5. Row 10: a
combination of the last 24 hours from the �rst principal compo-
nent (12 inputs); Kp, Dst and cosmic rays every second value
for the last 24 hours (3 x 6 inputs); and the last �ve days from
the GOES data (electrons, low and high energy protons) (3 x 5
inputs); this gives a total of 45 inputs to the models. For each
input data combination (the rows) two models are trained, one
to predict Meteosat-3 anomalies and one for Tele-X. The table
presents the result of the test �le for each model and the test
�le containing all the data ('all'). For more details, see the
text.

5. The analysis

5.1. Principal component analysis

The di�erence between the time periods with and
without anomalies from the SEM-2 data indicate that
the daily variation is larger than the di�erence be-
tween the two categories. Since a time series of the
SEM-2 data exists, a principle component analysis
(PCA) is performed to minimise the natural vari-
ances and enhance the di�erences in the data. The
�rst component of the analysis contained mainly in-
formation on the instant value of the ux while the
second component mainly contained the long term
changes.

There is a clear correlation between the �rst principal
component and the anomalies. If the �rst principle
component is selected to warn for anomalies within
24 hours (a threshold is selected so that warnings

exist only 20% of the time), this gives the result,
for Meteosat-3, that 60-75 % of the high values are
followed by an anomaly and 41% of the anomalies are
detected. Using this criteria no attempt is made to
make predictions 24 hours ahead. This indicates that
periods of high electron ux trigger at least some of
the anomalies.

5.2. Using electron uxes or PCA

Di�erent electron energies and the �rst principal
component from the PCA are compared as input in
to the models in Table 1. The models in the table are
trained based on three di�erent energy intervals from
SEM-2, the energies together and the �rst principal
component.

From Table 1 it is clear that no single energy range
from the SEM-2 instrument (highest, middle or low-
est) is better than the others. Using the three en-
ergies together improves the prediction result. Com-
paring the energy ranges from SEM-2 with the �rst
principal component shows that both parameters are
equally good. The output signal for the model based
on the electron uxes varies considerably between
two prediction steps. The model based on PCA has
an output which varies more smoothly (i.e. is easier
for a user to read).

When the network trained for Meteosat-3 anomalies
is tested with the Tele-X anomaly set, the predic-
tion success rate is greater for the Tele-X than for
the Meteosat-3 anomalies. This is only partly true,
as some of the e�ect is related to the fact that the
ratio of anomalies vs. non anomalies is di�erent be-
tween the two data sets (both test sets are analysed
with a 80% threshold level). When the Meteosat-3
anomaly test set is tested on a model trained on Tele-
X anomalies it is not as good as tested on a model
trained on Meteosat-3 anomalies. This is because
the Tele-X data used is only from the last part of the
Meteosat-3 mission. The network is only trained on
one part of the solar cycle, and as a result the prior
previous to the Tele-X data is under-predicted (few
warnings).

5.3. Using di�erent environment data

Di�erent environmental data are tested for both
satellites separately in Table 2. The �rst four models
used data from the last day. The best models use the
on-board electron measurement (SEM-2) represented
as the �rst component from the PCA. The second and
third best input data are the Kp and the Dst. For
Tele-X, the Dst model is better than the Kp model,
but the di�erence is still small. The poorest input,
row four, is the cosmic ray indicator (the neutrons);
this model is almost at the noise level.

The best input data from the GOES data (rows 5-7)
are the high energy electrons which are actually bet-
ter than the electrons measured on board Meteosat-3
(row 1). The proton model, row 6, for Meteosat-3 is
not as good as the Kp and the Dst models, but for
Tele-X the proton model is better.
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Row 8 in Table 2 uses the last measurement from the
GOES data (electrons, protons high and low). These
three measurements together (a time window of one
day) is better for Meteosat-3 than the earlier mod-
els, but for Tele-X, row 5 is still the best. To test
if the time resolution of the input data is the reason
for the di�erence between rows 1 and 5, the PCA �le
is recalculated to have the same time resolution as
GOES (one day) and a 7-day time window is used
for the model in row 9. The result of row 9 is the
same as using the 2-hour resolution in row 1. The
last input data combination is row 10 (see table text
for the combination). This input data combination
shows that Meteosat-3 is predicted best with a com-
bination of data sets, while Tele-X can be predicted
with only one input type, GOES electron data. The
di�erent combinations (not shown in this report) in-
dicate that for Tele-X it is the high energy electrons
that are the essential information. To improve the
rate of predicting anomalies on Tele-X, several days
of data are needed.

6. Discussion & Summary

The electron data in GEO provide one of the most
useful environment parameters. The best energy
range is in the MeV range, Table 2. Next best after
the electron data input is the Kp and Dst. This is not
surprising since both Kp and Dst reect responses to
changes in the electron content in the magnetosphere.

When a model has been created for a GEO satellite,
it can be used with good results on other satellites
(Table 1). This indicates that the created model uses
the same physical properties that are important for
both satellites for the prediction of anomalies. The
most important parameter to monitor for the predic-
tion is the electron ux, which can be measured by
another satellite with good results (see the example
of Tele-X). The last measurement of the environment
(in time) is the most important, but a longer time
window can increase the prediction result.

The best results for predicting anomalies from this
study were 54% for Meteosat-3 and 82 % for Tele-X
when 80 % of the non-anomalies were correctly pre-
dicted. A satellite operator will therefore experience
that when the model predicts no anomalies, it is to
89 - 97 % correct and a warning from the models is
correct in 20 - 30 % of cases. With these prediction
results, a satellite operator can use the model as an
warning indicator for times with an increased risk of
anomalies.
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