Monitoring capabilities of the Earth charged particle environment

J.-A. Sauvaud¹, S. Bourdarie², R. Ecoffet³

CESR/CNRS, Toulouse, France ONERA-DESP, Toulouse, France CNES-CST, Toulouse, France

> First European Space Weather Week ESTEC, Noordwijk, 30th November 2004

HIGH ENERGY PARTICLES

XMM - EPIC Radiation Monitor

SAC-C Icare

DEMETER IDP

ESA X-ray Multi Mirror Mission (XMM)

Launch: December 10, 1999

Orbit: 7000×114,000 km, i= 70°

European Photon Imaging Camera, EPIC

EPIC radiation Monitor, ERM

Boer et al., IEEE Transc. Nucl. Sci., vol.42, n°6, 1995

EPIC Particle Sensors

EPIC Low Energy Sensors

Electron energy range: 0.16 – 1.55 MeV

Proton energy range: 1.05 – 2.85 MeV

EPIC Low Energy Sensors

Incident Energy (MeV)

		Electrons				Protons			
Reduced	Original	Energy	GEF	Delta_e	Flag	Energy	GEF	Delta_e	Flag
channel	channels	(keV)	(cm ² sr)	keV)		(MeV)	$(cm^2 sr)$	(MeV)	
name									
LE1	8-11	164	0.0125	63	Х	1.053	0.0154	0.030	
LE2	12-15	226	0.0146	63	Х	1.079	0.0154	0.030	
LE3	16-19	290	0.0173	63	Х	1.106	0.0155	0.030	
LE4	20-23	353	0.0189	63	Х	1.140	0.0155	0.032	
LE5	24-27	416	0.0181	63	Х	1.175	0.0155	0.034	
LE6	28-31	478	0.0183	63	Х	1.211	0.0156	0.036	
LE7	32-35	542	0.0155	63	Х	1.250	0.0156	0.038	
LE8	36-39	605	0.0126	63	1	1.289	0.0156	0.040	
LE9	40-47	698	0.0110	126	1	1.350	0.0157	0.086	
LE10	48-55	825	0.0053	126	1	1.438	0.0158	0.091	
LE11	56-67	980	0.0033	190	1	1.554	0.0159	0.142	
LE12	68-83	1200	0.00062	253	1	1.723	0.0160	0.199	
LE13	84-99	1454	0.00048	253		1.926	0.0162	0.208	1
LE14	100-119					2.164	0.0165	0.271	1
LE15	120-203					2.85	0.0172	1.208	Х
LE16	204-255					4.5	0.026	1	Х

EPIC HIGH ENERGY SENSORS

Electron energy range: 0.95 – 2.54 MeV Proton energy range: 8.7 – 76 MeV

EPIC HIGH ENERGY SENSORS

Deposited Energy (MeV)

GEANT4

HIGH ENERGY TABLES

			Electrons				Protons		
Reduced	Original	Energy	GEF	Delta_e	Flag	Energy	Gef	Delta_e	Flag
channel	channels	(MeV)	$(cm^2 sr)$	(keV)		(keV)	$(cm^2 sr)$	(keV)	
name									
HES1	8-11	0.95	0.166	240	1	8.735	0.013	0.024	
HES2	12-15	0.90	0.198	240	Х	8.76	0.019	0.026	
HES3	16-19	1.07	0.122	240	Х	8.785	0.026	0.029	
HES4	20-23	1.24	0.057	240	Х	8.81	0.033	0.032	
HES5	24-27	1.41	0.027	240	1	8.85	0.042	0.036	
HES6	28-31	1.58	0.011	240	1	8.89	0.054	0.040	
HES7	32-35	1 .75	0.0068	240	1	8.93	0.074	0.044	
HES8	120-203					11.8	0.47	2.61	1
HES9	204-255					3 7.	0.47	7.	1

		Electrons				Protons			
Reduced channel name	Original channels	Energy (MeV)	GEF (cm ² sr)	Delta_e (MeV)	Flag	Energy (MeV)	Gef (em ² sr)	Delta_e (MeV)	Flag
HEC1	8-11	1.38	0.15	1	1	30	0.0003	1	1
HEC2	12-15	0.94	0.052	1	Х	40	0.0003	1	1
HEC3	16-19	1.02	0.035	1	Х	40	0.0003	1	1
HEC4	20-23	1.14	0.023	1	Х	50	0.005	1	1
HEC5	24-27	1.3	0.013	1	Х	49	0.004	1	1
HEC6	28-31	1.44	0.006	1	Х	45	0.004	1	1
HEC7	32-35	1.62	0.0031	1	Х	40	0.003	1	
HEC8	36-39	1.82	0.0018	1	1	35	0.003	1	
HEC9	40-47	2.02	0.0011	1	1	76	0.443	42	
HEC10	48-55	2.54	0.0005	1	1	65	0.298	41	
HEC11	56-67					44.6	0.085	9.33	1
HEC12	68-83					36.5	0.085	7.01	1
HEC13	84-99					30.9	0.085	4.40	1
HEC14	100-119					27	0.085	3.55	Х
HEC15	120-203					22	0.085	6.1	Х
HEC16	204-255					17.4	0.085	3.37	Х

GOES versus XMM proton fluxes at 44.6 MeV

Solar proton event

GOES FLUX

XMM-2001

SAC-C (CONAE, Argentina)

- Orbit:
- 715 x 715km, inclination: 98.2°
- Launch :
- 21 Nov 2000 Delta-2 from VAFB
- Instrument : ICARE-CNES

- Development, operations: CNES
- Calibration, science : ONERA
- Investigators : R. Ecoffet (CNES), D. Boscher (ONERA)
- Purpose of the instrument:
- Space environment
- Radiation effects on components (SEE, dose)

ICARE

Sampling rate: 64s

ICARE detectors

GEANT-4 simulations

DETECTOR SPICA/PC MATRIX TRANSFERT (Deposited E vs. Incident E) e-] 0 MeV 4 MeV [, 'Total' irradiation, 'coincidence' mode (if V1&V2 then V2) isotropic incidence, 100000 particles matrix 100 x 100 Bin of deposited E : 0.040404 MeV DETECTOR SPICA/PC MATRIX TRANSFERT (Deposited E vs. Incident E) p] 0 MeV 100 MeV [, 'Total' irradiation, 'coincidence' mode (if V1&V2 then V2) isotropic incidence, 100000 particles matrix 100 x 100 Bin of deposited E : 1.0101 MeV

Cross calibration with GOES

Energy channels

Ε		P		Ι	
E1	electrons 260 keV	PE0	electrons > 0.9MeV	I1	ions 54 MeV*
E2	electrons 320 keV	P1	protons 10.5 MeV	I2	ions 65 MeV
E3	electrons 360 keV	PE1	electrons 1.5 MeV*	I3	ions > 100 MeV
E4	electrons 420 keV	PE2	electrons 2. MeV*		
E5	electrons 480 keV	PE3	electrons 2.4 MeV*		
E6	electrons 560 keV	PE4	electrons 2.9 MeV*		
E7	electrons 620 keV	PE5	electrons 3.4 MeV*		
E8	electrons 700 keV	PE6	electrons 3.9 MeV*		
E9	electrons 820 keV	P2	protons 15.5 MeV		
E10	electrons 1200 keV*	P3	protons 23 MeV		
E11	electrons 1400 keV*	P4	protons 33.5 MeV		

* contaminated

SAC-C electron results: survey plots

Influence of Solar energetic particles on the proton radiation belt

Example of SAC-C measurements E = 10.5 MeV, 31 March 2001 event

Influence of Solar Energetic Particles on the Proton RB

Example of SAC-C measurements E = 10.5 MeV (715 km)

Effect of the 29-31 October 2003 event seen by ICARE / SAC-C

"SPACECRAFT ANOMALIES"

ICARE SAC-C ELECTRONS 560 keV

A possible explanation for the decrease of SPOT5 mass memory SEU rates after the solar event of the 29/09/04

DEMETER: A FRENCH MICRO-SATELLITE ON A LOW POLAR ORBIT

Goals: Study of human electromagnetic emissions, of ionospheric effects of volcanism and earthquakes...

Electrons:

256 channels from 70 keV to 2.5 MeV

Protons:

An integral channel E > 2.5 MeV

DEMETER-IDP

DEMETER

14/Aug/2004

OUTER BELT – SLOT - INNER BELT

)EMETER

12/Aug/2004

INNER BELT WAVES EFFECT

DEMETER

31/Aug/2004

INNER BELT WAVES EFFECT

INNER BELT ENERGY SPECTRA

INNER BELT - WAVE

Variation of the resonnant energy with L

(Abel and Thorne, JGR, 1998)

SOUTH OF THE ATLANTIC ANOMALY

DEMETER

13/Sep/2004

NON HARMONIQUES

Fréquemment observés au sud de l'Afrique

04/0ct/2004

04/0ct/2004

02/0ct/2004

DEMETER

04/0ct/2004

DEMETER - 2004

DEMETER - 2004

L

L

1

DEMETER - 2004

Satellite charging

Earth orbiting spacecraft can encounter plasma of vastly diverse characteristics in the energy range: ~ eV - 60 keV

Versatile and reliable particle experiment are needed. To meet the objectives, the instrumentation has to satisfy the following criteria:

- Be immune to UV flux
- Be immune to high energy particle background
- Provide uniform coverage over a large pitch-angle range with a good angular resolution
- Have high sensitivity and large dynamic range (~ 10^7)

Rely as much as possible on well-proven designs by basing sensor designs on those successfully flown:

ESRO-1A	CASSINI	ARCAD-1/2/3
GIOTTO	MEX	INTERBALL
AMPTE	STEREO	
VIKING	VEX	
FREJA		
EQUATOR-S		
CLUSTER		

UV: Three reflections, scalloping, coating

High energy particle background: Coincidence or multiplier sample Uniform coverage: top-hat (Carlson, Paschmann et al., 1982)

SUMMARY

1) We have the necessary tools to measure/model the Earth's radiation belts

New improvements are needed to measure pitch-angle distributions

2) We need a framework to build common experiments

3) Past and ongoing missions will be used to define simple low energy sensors