Forecasting, Modelling and Monitoring GICs and other Ground Effects: Future Needs

Henrik Lundstedt Swedish Institute of Space Physics Lund, Sweden www.lund.irf.se

Outline of my talk On Future Needs

From a user's (power operator's) point of view

- Warnings long-beforehand (days to weeks)
- Forecasts of large storm events. Minor storms they can handle.
- Forecasts of E, from local dB/dt and a σ , so they can calculate GIC using power grid information because the power grid configuration is changing all the time.

From a scientist's and forecaster's point of view

- Improved understanding of 3D CMEs (STEREO)
- To develop hybrid models including both theory and data based models.
- Improved monitoring of the solar wind (thru ILWS, LOIS) and of earth's magnetic field (thru network of magnetometers)

The importance of using helioseismic observations

The importance of using time distance flow maps and vector field for neural network forecasting of solar flares and fast CMEs

AR 486, 29th of October 2003

The importance of detecting the full halo CMEs

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

CACTUS - SIDC

The importance of solar MHD modelling

Full halo CMEs usually originate from bipolar helmet streamers (Zhao and Webb, 2003). The probability for an Earth-directed CME to be geoeffective is near 100% if the associated HCS is basically parallel to the ecliptic plan; it is only about 50% if the HCS is basically verticular to the ecliptic plan.

CMEs become Earthdirected when the associated **flare or active region is located less than 40 degrees from disk center** (Cane and Richardson, 2000)

Which Halo CME will hit Earth and cause large GIC and Ground Effects?

Let's look at some examples:

- The Carrington event September 1, 1859
- The September 24, 1909 event
- The May 14, 1921
- The March 13-14, 1989 event
- The Bastille event 2000
- The October- November, 2003 event
- The November 2004

Carrington event 1859, September 1 Dst = -1750nT

A magnetic storm from August 28 to September 2 produced widespread effects on the telegraph system in Europe and North America.

The Sun September 24, 1909

A flare was observed (spectroheliogram) by James Lockyer 10-11 a.m. (UT) September 24 . The associated CME caused a geomagnetic storm on September 25.

The observation was made at Kalocsa,Hungary

September 25,1909 aa = 658, 12-18

(March 1989 aa = 715, 13/3 21 - 3 14/3)

The Sun May 14, 1921

May 14 1921

1921 May 14, hour 21 and May15, hour 3 aa = 680

The March 1989 event

In Sweden

One of the generators of OKG's (Sydkraft's) nuclear plants was heated due to the geomagnetically induced current in March 13-14 1989.

A white-light flare was observed on March 10 at AR 5935 and the SMM satellite's coronograph detected a large halo CME.

Late on March 13 the CME reached Earth.

The geomagnetic storm index Dst reached -589nT.

Superstorms: Dst < -300nT : 21 since 1957

- October 29, 2003: Dst = -308nT
- October 30, 2003: Dst = 342nT
- November 20, 2003: Dst = 429nT
- March 14, 1989: Dst = -589nT
- September 1-2, 1859: Dst = -1760nT

The halo CME of October 28 arrived at 05 UT on October 29

October 29, 2003: Dst = -308nT

(Courtesy H. Swahn, 2003)

Transformer oil heated 10 degrees! GIC $\approx 173A$

Power outage in Malmö

2003-10-30 at 21:07:15 (20:07:15 UT) The tripping of a 130-kV power line in the Malmö caused an outage of 50 000 customers. The outage time ranged from 20 to 50 minutes. (Sture Lindahl, ELFORSK report 2004)

The halo CME arrived ~16.20-30UT October 30, 2003: Dst = - 342nT

Power Outage in Southern Sweden, October 30, 2003

Courtesy Sydsvenskan Bild.

Active Regions 484/486/488 one rotation later

GICs November 6-10, 2004

(Courtesy H. Swahn, 2004)

Solar wind 5-11 November, 2004 Brorfelde magnetograms 7 to 9 November

ESA GIC Pilot Project

Prototype GIC Forecast Service

ESA GIC Pilot Project

IRF Real-time forecasts of GIC event on November 8 and 9

(http://solarwind.lund.irf.se/forecast/gic/index.html)

We need a better understanding of the 3D nature of CMEs

Courtesy: A. Title 2004

Nov 2 2003 00:24:11

Sometimes we need a better solar wind monitoring

 \bullet

- Solar-Heliospheric Network observing Sun & tracking disturbances from Sun to Earth.
- Geospace Mission Network with constellations of smallsats in key regions of geospace.

International Living With a Star

New ground monitoring facilities Real-time magnetic field data really needs to be easily available

Conclusions 1: Future Needs -Hybrid models and better monitoring

To achieve the operator's needs

- Helioseismic observations
- Solar MHD models
- Neural networks integrating all knowledge into real-time forecasts
- Improved monitoring and data coverage

Conclusions 2: Future Needs No high solar activity - No big GIC and Ground Effects: The Sun has always the last word! So what's next?

- A low next solar cycle 24?
- A Gleissberg maximum: 2030-2040? (New Carrington event?)
- A Maunder Minimum: 2100?

THE END