Study Overview This study was carried out: - By the ESTEC CDF team - on request by ESA TOS-EMA (Responsible of the Space Weather Study) - in the period 2 October (Study Kick-off) to 27 November 2001 (Final Presentation), in 15 working sessions (half day each) - by an interdisciplinary team of ESA technical specialists - · Using concurrent engineering methods and - · with as input draft reports from Alcatel & Ral consortia in ESA Space Weather studies Space Weather Studies CDF Final Presentation 18th December 2001 # Table of Contents - Study overview - System Architecture - System design - Conclusions 18th December 2001 S Space Weather Studies CDF Final Presentation # SW - CDF Study **Objectives** - Assessment study of up to 3 missions (~in series) implementing the Space Weather Space Segment - System and S/S conceptual design - Mission and Ground System and Operations Assessment - Payload accommodation - Industrial Costing - Instruments Costing (as far as info is available) - Technical risk assessment - Programmatics/AIV - Simulation 18th December 2001 Space Weather Studies # System Architecture 18th December 2001 Space Weather Studies CDF Final Presentation ## SW Space Segment Priority missions Three dedicated missions have been identified as high priority for the Space Segment: | Name | Mission | Main Objective | |------|------------------------------|---| | IMM | Inner Magnetospheric Monitor | To provide near-real time
monitoring of Earth
Magnetic field and
particles | | SWM | Solar Wind Monitor | To provide near-real time
monitoring of Solar Wind | | SAM | Solar Activity Monitor | To provide near-real time
imaging of the Solar disk
(for solar flare detection)
and corona | 18th December 2001 Space Weather Studies CDF Final Presentation SW Space Segment High Level Requirements - . To design a minimum set of S/C, missions and associated Ground Stations performing continuous monitoring of Space Weather phenomena and performing near real time downlink to Earth and immediate processing on ground of the data - Design the set of S/C with a lifetime of minimum 5 - · European independent system - No connection with present or future Science Missions S 18th December 2001 Space Weather Studies CDF Final Presentation ## System Architecture IMM & SWM orbits Given the requirements the choice of the orbit for IMM and SWM is quite straightforward: IMM constellation (4 S/C): GTO-like orbit **SWM:** orbit around L1 (Halo or Lissajous) All the architecture options have therefore been based on SAM 18th December 2001 Space Weather Studies # Trade-Off Results - Conclusion Data Relay Option is a possible alternative but, before it can be considered a valid competitor of Option 1, the design of SAM must be investigated in more detail Combined SAM&SWM option should be considered in case cost reduction is required Trailing Orbit Option should be considered in case emphasis is to be put on CME monitoring **Balloons and SSO Options are not recommended** 5 18th December 2001 Space Weather Studies CDF Final Presentation 11 # System Architecture Options Gradition System Architecture Options Gradition ASC is 650 NOT/3 reset #### **IMM** - Requirements - Constellation of 4 S/C in highly eccentric,12hour period, 10-deg orbit - · Lifetime: 5 yrs - Launch date for pre-op system: 2006 - High Electromagnetic Cleanliness (Cluster-type) - Spin stabilisation - Maximum downlink gap acceptable ~30 min but data not immediately sent to Earth shall be stored and sent at the earliest opportunity S 18th December 2001 Space Weather Studies CDF Final Presentation 13 ### IMM Launcher Selection - •Single launch of the complete constellation much more efficient than launching one by one •Launch to GTO very costly (only piggyback - •Launch to GTO very costly (only piggyback launches can be considered) - •"Cheap" launchers (e.g. Russian launchers) launch to too high inclination (45 to 63 deg) requiring a very large manoeuver to get to GTO - •Launch to low inclination LEO (18 deg) possible with PSLV and GSLV - •Only two cost effective solutions: - •Launch with GSLV (>4000 Kg available) - •Launch as A5 ASAP (1200 Kg available) S 18th December 2001 Space Weather Studies 15 | Inner Magnetosphere Monitor payload summary | | | | | | | | | |--|--------------|--------------------------------|--------------|--------------------------|---------------|---------------|---------------|--| | Instrument name | Mass
(kg) | Mass
inc 8%
mar.
(kg) | Power
(W) | Telemetry rate
(Kbps) | Dim 1
(cm) | Dim 2
(cm) | Dim 3
(cm) | | | Thermal Plasma Monitor Mid-Energy particle Monitor | 5
2 | 5.4
2.16 | 8
4 | 2 2 | 20
15 | 20
15 | 20
15 | | | High Energy particle Monitor Magnetometer | 6.1
1.2 | 6.59 | 6.25 | 1.5
0.2 | 20 | 20 | 10
15 | | | Waves instrument GPS Receiver - Ionosphere Sounder | | 6.26 | 4 | 2 | 20 | 10 | 5 | | | or o receiver - ionosphere sounder | 5
. 25 | 27 | 36.3 | 8.7 | ı ° | l° | ı° | | · S/C requirements summary: S - AOCS: Spinning s/c, spin rate 15 rpm (4s per spin). Spin axis orientation perpendicular to ecliptic acceptable, (though ideally it should be in equatorial plane). Pointing accuracy about 1° - Demanding EMC requirements for in-situ plasma analysis Space Weather Studies 18th December 2001 CDF Final Presentation #### Constellation Launch & Deployment - · Launch of stack of 4 satellites on LEO 200 km inclination 18° by GSLV - Apogee satellite 1 raised to 39717 km by multi-burn of on-board propulsion system - · Apogee of other satellites raised when differential apsidal line rotation reaches 90°, 180° and 270° on day 12, 24 and 35 respectively - Perigee raised to 650 km and inclination decreased to 10° by a last apogee manoeuvre - Total ΔV for each satellite: ~2.7 km/s 18th December 2001 Space Weather Studies CDF Final Presentation # IMM Conclusions and (Open Points - •An IMM S/C based on a custom spin stabilised design is proposed - •The design fulfils the user requirements apart from a gap in continuous coverage of max 30 min for altitude < 3000 Km #### Points requiring future investigation - •Increase of mass margin at launch and GSLV performance - •More detailed radiation analysis needed at component level - •Definition of a spare and replacement policy. Two replacement S/C could be launched by PSLV S 18th December 2001 Space Weather Studies CDF Final Presentation 21 # Solar Wind Monitor payload summary | | Mass | Mass
inc 15%
mar. | | Telemet
ry rate | Dim 1 | Dim 2 | Dim 3 | | |-------------------------------|------|-------------------------|-------|--------------------|-------|-------|-------|------------------------------| | Instrument name | (kg) | (kg) | (W) | (Kbps) | (cm) | (cm) | (cm) | Heritage | | x Thermal Plasma Monitor | 5.0 | 5.8 | 8.0 | 0 2.0 | 20 | 20 | 20 | CLUSTER/PEACE, EQUATOR-S/3DA | | x Mid-energy particle Monitor | | | | 2.0 | | | 15 | | | Magnetometer (2 sensors) | 1.5 | 1.7 | 7 2.0 | 0.2 | 20 | 10 | 15 | OTS | | Coil Radio-Spectrograph | 3.7 | 4.2 | 2 5. | 7 2.5 | 20 | 10 | 5 | Breadboard. POLAR | | | 12.2 | 14.0 | 19.7 | 6.7 | | | | | - · S/C main requirements summary: - AOCS: Spinning s/c, spin rate 15 rpm (4s per spin). Pointing accuracy about 1° - · Demanding EMC requirements for in-situ plasma analysis 18th December 2001 Space Weather Studies 23 ## SWM - Mission Requirements - Orbital location with continuous and unobstructed flow of the Solar Wind - · Near-real time data flow - Lifetime: 5 yrs - · Launch date for pre-op system: 2006 - High Electromagnetic Cleanliness - Spin stabilisation preferred S 18th December 2001 Space Weather Studies CDF Final Presentation 22 ## SWM Launcher Selection - •If Soyuz-Fregat or PSLV is chosen: - •Launch into 200 km parking orbit with upper-stage still attached, Upper-stage ignites and injects S/C into L1 transfer orbit - •Performance to L1: PSLV = 400 Kg, Soyuz-Fregat= 1600 Kg - •If Rockot (+ additional STAR 37 motor) is chosen: - •Launcher puts S/C + STAR37FM solid engine attached into 200 km orbit, STAR37FM ignites and S/C+STAR37FM enter L1 transfer orbit - •Performance to L1: 306 Kg 18th December 2001 Space Weather Studies # SWM: Requirements and Mission Design #### Requirements: uninterrupted - view of the Sun (no eclipses) - ground contact - Requirements met by Halo orbit around libration point L₁ (SOHO orbit) - Continuous ground contact assured by three stations about 120° apart in longitude - Direct launch with Soyuz + Fregat of composite SWM + SAM on transfer orbit to L1 - Separation between SWM and SAM a few hours after injection 1,000,000 800,000 4 Earth Centred Rotating X-Y Plane [km] S 18th December 2001 Space Weather Studies CDF Final Presentation # SWM Conclusions and (Open Points - •Very simple and reliable design - •Low mass leads to inefficient launch in terms of cost (dual launch with SAM by Soyuz Fregat still leaves some 800 Kg margin) - •Baseline design is compatible with a single launch using PSLV or dual-launch with SAM using Soyuz-Fregat - •Rockot Option feasible with some design changes but SAM launcher selection problematic - Present SWM design could probably be made also compatible with the option of SAM in GEO as a relay satellite (needs further investigation) S 18th December 2001 Space Weather Studies CDF Final Presentation 29 # SAM Design options SAM options are discussed and traded at system architecture level (see above). Hereafter only consideration at S/C design level are reported and discussed The design baseline selected is: | Mission | | | | | | | |-------------------------|-------------------|--|--|--|--|--| | Number of Satellites | 1 | | | | | | | Orbit | L1 | | | | | | | Launch Date | 2006 | | | | | | | System | | | | | | | | Satellite Type/Platform | Custom | | | | | | | Dry-mass class | 1000 | | | | | | | Stabilisation | 3-axis | | | | | | | Payload | | | | | | | | Instrument Set | nominal | | | | | | | Lavncher | | | | | | | | Launcher | Soyuz-Fregat dual | | | | | | | Launch Strategy | Direct | | | | | | | Propulsion | | | | | | | | Type of Propusion | No main prop. | | | | | | S 18th December 2001 Space Weather Studies 31 #### **SAM** - Requirements - S/C Sun pointing with accuracy of 7 arcsec (3-axis stabilisation) - Location with unobstructed view to Sun - Possibly pointing direction at an angle with the Sun-Earth direction - · Near real-time data downlink - Lifetime: 5 yrs - Launch date for pre-op system: 2006 18th December 2001 S Space Weather Studies CDF Final Presentation 30 # Solar Activity Monitor payload summary | | Mass | Power | Telemetry | Dim 1 | Dim 2 | Dim 3 | | | |-------------------------|------|-------|-------------|-------|-------|-------|---|--| | Instrument name | (kg) | (W) | rate (Kbps) | (cm) | (cm) | (cm) | Heritage | | | White Light Coronagraph | 23 | 20 | 21 | 130 | 30 | 15 | Mod from SOHO - LASCO, STEREO -SECCHI | | | EUV Imager | 15 | 18 | 10.5 | 100 | 20 | 20 | Mod from SOHO - EIT, Trace, Solar Orbiter EXI | | | X-Ray Photometer | 16 | 16 | 0.1 | 26 | 14 | 11 | XRS-GOES | | | Cosmic Ray Monitor | 6 | 4 | 2 | 20 | 20 | 20 | Proposed Stereo, Solar Orbiter | | | | 60 | 58 | 33.6 | ' | | ' | | | - S/C main requirements summary: - AOCS: 7 arc seconds pointing accuracy, 5 arc seconds during 15 min pointing stability. - Baseline T operating 0/+20°C, Non-operating -30/+60 °C; CCD detectors need passive cooling at -80 °C during operation S 18th December 2001 Space Weather Studies CDF Final Presentation #### **SAM Launcher Selection** - Soyuz Fregat Dual launch with SWM selected as the most efficient launch strategy - •Dnepr Varyag possible back-up (if launch is earlier than 2008) but availability and performance of this launcher need confirmation - •Single launch with PSLV or Rockot impossible due to the low mass performance to L1 (400 or 300 Kg) - •No medium-size launcher available compatible with the mass of SAM+SWM S 18th December 2001 Space Weather Studies CDF Final Presentation 33 #### SAM Baseline Configuration •Box-like SOHOtype design Configuration driven by the size of the PL and the need HGA antenna of interfacing with SWM during launch Cryogenic radiator •All equipment offthe-shelf •Simple sun pointing operational mode •Only propulsion for AOCS required (monopropellant system) Space Weather Studies 35 CDF Final Presentation 18th December 2001 # SAM Requirements and Mission Design - Requirements similar to SWM - Same orbit as SWM - Launch together with SWM - Performance of launcher (1600 kg) more than sufficient for dual launch - Dish for SAM ground coverage in same location as for SWM S 18th December 2001 Space Weather Studies CDF Final Presentation # SAM Conclusions and (Open Points - •A large number of options are possible for the SAM design. The L1 option has been estimated as the most straightforward to implement - •The user requirements have been fulfilled although the choice is not optimal as far as CME is concerned - •The design is compatible with dual launch together with SWM which allows for a very large mass margin (additional payload may be carried) - •Two options (Data Relay and 10-deg Trailing Orbit) require further investigation before considering them as potential alternatives 18th December 2001 Space Wea Space Weather Studies CDF Final Presentation 37 #### Conclusions - A reference Space Segment architecture has been selected and analysed into detail - Several options which could either increase the cost effectiveness or the user requirement satisfaction have been proposed and partially analysed - The proposed set of missions is simple and technically feasible with ample margins. No specific new technology development is needed (apart from some instruments) - The total cost (including instruments and operations) exceeds the target of 300 ME. However, several countermeasures are proposed to reduce the cost subject to further investigation - From the programmatic point of view the first feasible date for the deployment of the pre-operational system appears to be 2007 Space Weather Studies 18th December 2001 CDF Final Presentation S ntation