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ABSTRACT

The Satellite Anomaly Analysis and Prediction System
(SAAPS) is a software containing a database of space
weather data and satellite anomaly data, tools for
plotting and analysis, and models for the prediction of
anomalies. The system uses real-time data and can run
stand-alone on a computer or remotely over the
Internet. The anomaly prediction models use neural
networks that have been trained on specific anomaly
sets that are related to either surface or internal ESDs.
The predictions range from nowcasting up to one-day
forecasts. Generally, the predictions are correct in
slightly more than 70% of the events. The model also
gives the probability that a specific forecast is correct,
which range from poor (50%) to very good (90%). A
user can also submit anomaly data for further analysis.
Visit http://www.irfl.lu.se/saaps for more information.

1. INTRODUCTION

This paper describes the development of the Spacecraft
Anomaly Analysis and Prediction System, hereafter
called SAAPS. SAAPS is the software implementation
of the ESA funded project Development of AI methods
in spacecraft anomaly predictions (ESTEC contract
13561/99/NL/SB). The project is a continuation of the
ESA Study of plasma and energetic electron
environment and effects [1].

Many years experience exists on how spacecraft are
affected by the space environment. These findings
have been included in the design of spacecraft to
reduce the risks of anomalies related to surface
charging [2] and internal charging [3]. However, the
properties of the plasma and radiation that surrounds
the spacecraft vary dramatically both over space and in
time. Thus, it is difficult to completely remove
anomalies related to the space weather [4].

On most spacecraft anomalies occur regularly. Their
impacts are often not dramatic, but they still have to be
dealt with, and may also include intervention from on-
board systems or ground control. However, there are
also severe events such as the failures of the
momentum wheel control systems on ANIK El and E2

in 1994 [5,6] and the loss of solar power on El in 1996
[7].

There are several related projects that study the space
weather and its effects on spacecraft. The Space
Environment Information System (SPENVIS) [8,9]
contains an impressive number of models, and not only
for spacecraft charging purposes. The intended users
of SPENVIS are spacecraft engineers, scientists, and
educators and students. A specific model to study
internal charging is DICTAT [10]. DICTAT is also
one of the models included in SPENVIS.

In the rest of the paper we will describe SAAPS and its
subsystems and also discuss the results of the analysis
and prediction of a few selected anomaly sets.

2. SAAPS

SAAPS consists of a database, analysis module,
prediction module, and various interfaces as shown in
Fig. 1. The database contains solar wind data, electron
and proton flux data at geostationary orbit,
geomagnetic indices, and satellite anomaly data. The
data comes from different sources. The OMNI database
[11] is included so that historic solar wind data can be
accessed. From about 1998 and onwards the ACE [12]
one minute resolution plasma and magnetic field data
are included providing real-time operation. Electron
flux for the >0.6 MeV and >2 MeV energy levels are
included from the GOES-8 and —10 satellites [13], also
providing real time access. LANL electron data are
included for a three-year period [14]. The data are
available in 7 energy levels from 22 eV to 11 MeV
with a time resolution of 1 hour. Geomagnetic indices
that are included are Kp, Dst, and AE. The Kp index
exists in four different versions. The final Kp comes
from NGDC [15], the close to real time estimated Kp
from SEC [16], the nowcasted Kp from Lund, and the
forecasted Kp also from Lund [17]. Finally, the satellite
anomaly data come from both public and private
sources. The NGDC anomaly database [18] with over
5000 anomalies has been used. Also ESA anomaly sets
[19] and other data sets from commercial satellites
have been included.



HTTP / Javal L, FTP / Java External
DBT e database
| SAAM |<—>|

[
>
T
<

>
»l

HTTP / Java
HTTP /Java

<
<

[
D |4
@
=

Fig. 1. SAAPS with subsystems and interfaces.
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The database tool (DBT, Fig. 1) updates the database
with real-time data from various external sources. On
the system level the database can also be manipulated
using the DBT. The analysis and prediction modules
can only access data from the database via the DBT.

The analysis module (SAAM, Fig. 1) operates on the
data in the database. The module contains tools to plot
data from the database, plot anomaly data, estimate the
best prediction model from user submitted anomaly
data, perform superposed epoch analysis, find energetic
electron flux levels that may cause internal charging,
and to find Kp levels that may be related to surface
charging anomalies.

The prediction module (SAPM, Fig. 1) contains
different models that can be used for the prediction of
specific satellite anomalies, caused by surface charging
or internal charging, with a daily resolution based on
daily summed Kp or daily >2 MeV electron fluence.

SAAPS has been implemented in Java and runs on a
Sun Workstation. Solar wind data, geostationary
electron flux data, and geomagnetic indices are updated
in real time from: the Space Environment Center,
Boulder, USA (ACE, GOES-8 and —10, estimated Kp);
the World Data Center C2, Kyoto, Japan (near real
time Dst); and the Regional Warning Center, Lund,
Sweden (nowcasted and forecasted Kp). As the
compiled Java code is platform independent it can be
run on virtually all computer systems. It has been
successfully tested on Mac OSX, Windows, and Linux
platforms. The analysis and prediction tools have also
been implemented as Java Applets, which means that
they can be run from a web browser over the Internet.
The Java Applets offers another degree of user
interaction.

3. DEMONSTRATIONS AND RESULTS

In the following we demonstrate a few examples of
how SAAPS can be used.

In Fig. 2 the local time histogram is shown for a
satellite that has experienced surface charging
anomalies. The expected clustering of anomalies in the
local morning sector is seen. As indicated by the button
“Edit Anomaly Data ...” in the figure the user can
enter his own anomaly data and produce the various
plots.
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Fig. 2. An example of a local time histogram using the
anomaly plotter tool.

In Fig. 3 the data plotter interface is shown together
with an example plot of the GOES-8 data. The top
panel shows the interface from which the data are
selected. In the top left scroll pane the database items
are listed with the GOES-8 particle data currently
selected. The user enters the start and end dates over
which the data should be studied. After the data has
been downloaded the user selects the parameters that
should be on the x-axis and y-axis, respectively. In this
example the x-axis represents time and the y-axis
represents the >0.6 MeV and >2 MeV electron flux
data. The bottom panel of Fig. 3 shows the resulting
plot. The user can then further manipulate the plot by
choosing linear or logarithmic scales, changing the axis
limits and zooming in and out of the plot. As the data
have already been loaded into the applet in the web
browser it is also possible to select other data fields to
be plotted without having to reload any data.
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Fig. 3. The bottom part of the figure shows a plot of
GOES-8 electron flux data created with the data plotter
tool.

As a final demonstration we give an example of a tool
in the prediction module. One model in the prediction
tool consists of a neural network targeted at predicting
anomalies with a daily resolution for one specific
satellite at geostationary orbit. The neural network uses
daily sums of Kp extending over the past eight days at
its inputs. The network has been trained in the standard
way using three independent data sets: training set,
validation set, and test set. The optimal network
architecture, i.e. the number of hidden neurons and the
length of the time delay line, is determined from the
validation set. On average, this model makes a correct
prediction in about 70% of the events on a balanced
test set, i.e. a set with equal number of “anomaly”
events as “no anomaly” events. However, it was found
that the output value from the neural network not only
gives the predicted class, but also the probability that
the prediction is correct [20]. In Fig. 4 it is shown that
the absolute value |y| of the network output is directly
related to the probability that the prediction is correct.
At one end we get probabilities close to 50% which we
would also achieve with a model always predicting “no
anomalies” or with a model always predicting
“anomalies”. At the other end we reach probabilities
between 80% to 90%. The dashed line shows the
fraction of events in each bin. Taking the last two bins
we see that almost 50% of the events are predicted with
an accuracy of 80% or higher.
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Fig. 4. The figure shows how the probability for
correct prediction varies with the absolute value of the
network output |y|.

In Fig. 5 the anomaly prediction tool is shown. The
plot extends over a period of 14 days in November-
December 2001. In the top left scroll pane different
prediction models can be selected. The type of
anomalies that the model has been trained to predict
and other information can be retrieved by pushing the
“Inspect model” button. The date of the day to be
predicted is entered and then the model is run for a 14-
day period ending on the selected date. The plot gives
the probability for an anomaly and goes from 0% to
100%. The probabilities are derived from the output
value and Fig. 4. If the prediction is 20%, as for 22
November, then there is an 80% probability for a “no
anomaly” event. November 24" predicts an “anomaly”
event with a 85% probability.
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Fig. 5. The figure shows the prediction of anomalies
for one model over the 14-day period 21 November to
4 December 2001.



4. DISCUSSION AND CONCLUSIONS

The main features of SAAPS are the possibilities to
quickly and easily analyse the space environment, and
to make predictions of specific charging related
anomalies. SAAPS will be further developed by
including more models to forecast anomalies as there
still are many anomaly data sets that have not yet been
studied. It also seems to be difficult to find one model
that can predict anomalies of a certain class but for
different satellites. Instead, the prediction models
should be targeted for specific satellites. It is also
planned to merge SAAPS with the Lund Space
Weather Forecast Service [21]. During the
development of SAAPS we have had discussions with
a few selected satellite operators. They have provided
input on what kind of information they need and what
kind of actions they might take during hazardous
events. In the future we plan to deepen the
collaboration with the operators so that SAAPS can
mature into a useful system for real-time operation.
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