Do Solar Variations Affect Our Climate?

ESA Space Weather Workshop:
Looking towards a European Space
Weather Programme
ESTEC, December 2001

Eigil Friis-Christensen

What Are the Causes of Climate Variations?

- Internal oscillations in atmosphere-ocean system
- Variation in energy received from the Sun:
 - Solar irradiance variations various spectral bands.
 - Cloudiness.
 - Volcanic dust and aerosols.
 - Other aerosols, natural and human induced.

Variation in energy radiated away from Earth:

- Atmospheric properties, in particular greenhouse gasses like
 - CO₂,Methane, CFCs, Ozone.
 - Cloudiness and water vapor (important part of feed-back mechanisms).
- Surface properties like
 - Ice cover, land and ocean.
 - Vegetation.
 - Land erosion.

How do we define solar variability in this context?

Total solar irradiance

- Relatively small during a solar cycle (0.1%)
- Long-term variations (0.25%?)

UV-radiation changes

- Small power compared to the visible part of the spectrum.
- Relatively large variation during a solar cycle (> 1% at stratospheric heights, even more at higher altitudes)

Changes in the solar wind (heliosphere)

- Extremely small power.
- Very large relative variations during a solar cycles and on longer terms.
- Earth's surface modulation of cosmic ray flux ~ 20%
- Middle atmosphere formation of odd Nitrogen

Solar Irradiance Measurements - The Sun as a Star

Irradiance measurements are made by several instruments on SOHO:

- VIRGO Total solar irradiance
- •SEM (Celias): EUV disk integrated flux from 1-770Å and in He II 304 Å
- •CDS: EUV 307-380 Å and 515-632 Å Spectral irradiance and 69 full disk images taken each month

from: C. Fröhlich & J. Lean, 1998, Geoph Res. Let., 25, pp. 4377-4380, and the VIRGO Team (Nov 29, 1998)

Sunspot Number R

- Sunspot number R, monthly values
- Period between 9 and 13 y
- Longer periods exist, 60-100 y

Solar and Geomagnetic Activity

Yearly average

Geomagnetic activity index (aa) Sunspot number (R)

- Solar activity ~ 11-y
 period. The rhythm, not
 the form, is reproduced in
 geomagnetic activity.
 Long-term variation is
 different
- Conclusion: R and aa are different manifestations of solar energy output

Global Temperature and Cycle Length: An Update

- During the latest about 20 years, temperature has increased more than expected based on the length of the solar cycle
 - The effect of enhanced greenhouse effect is finally seen
 - The climatic effect of solar activity is not fully described by the length of the solar cycle
 - Surface temperature are not representative (Satellite MSU measurements)

IPCC 1990: Increase by 0.3 to 0.6°C over last century **broadly consistent** with climate model predictions.

FCL 1991: Major part of temperature changes during last century well correlated with solar activity.

IPCC 2001: Temperature increase during the last 50 years mainly caused by human activity.

Past Temperature

11-Year Mean Values of Reconstructed Temperatures

Jones et al.

No assumptions

Traditional

averaging

Mann et al.

Assumptions:

Relationships between temperature variations at different sites are unchanged in time

Past Temperatures - Greenland Ice Sheet

Reconstruction of past temperatures based on bore hole data from two sites:

Dye-3 and Grip on the Greenland Ice Sheet.

Dahl-Jensen et al. Science 1998

Atmospheric Ionisation Density Profile

Figure 1.1.1 Typical ionization density profile of the atmosphere as a function of altitude. For each height regime, the major ions species are listed.

Viggiano and Arnold, 1995

Ion pair production over Thule

"The meteorological variable subject to the largest solar-cycle modulation in the dense layers of the atmosphere is the atmospheric ionisation produced by cosmic rays."

E.P. Ney, Nature, 1959.

Cloud Types and Cosmic Rays

Physical mechanisms - formation of clouds

Low clouds are affected

- Implies an effect on water vapour clouds not ice clouds
- Aerosols via production of cloud condensation nuclei (CCN) are important for the cloud formation
- How are CCNs formed?
 - Insufficient understanding
- Do electric charges play a role?
 - Yes, according to new research results, computer simulations
- What is missing?
 - Experimental proof

Conclusion

Changes in total irradiance

Some effect is probable

Changes in UV-radiation

- Decadal variations in observed parameters can be modeled
- Systematic effects observed at high altitudes less at the surface

Changes in energetic particle flux

- Cosmic ray flux
 - Effect on cloud nucleation seems a promising mechanism potentially large effect
- Energetic electron precipitation
 - effect on ozone may be similarly effective as UV effect

All components may work together

- and do not exclude an effect of the increased amount of greenhouse gases

