Space Climatology

- Some first steps -

Karl-Heinz Glassmeier and Anja Neuhaus
Technical University of Braunschweig

Joachim Vogt
International University of Bremen

Invited presentation

Alpach Summer School 2002
Space Weather: Physics, Impacts and Predictions

Abstract I

Sun and Earth are not only coupled by the solar radiation and

its impact on the terrestrial climate, but also via the solar wind

and its interaction with the geomagnetic field. The dynamics of the
coupled solar wind-magnetosphere systems gives rise to a number of
dynamic phenomena such as magnetic storms and substorm which may
even effect anthropogenic systems such as power lines and
communication spacecraft. In view of this importance of the physical
processes in the outer fringes of our geosphere the new discipline
“Space Weather Research” has emerged.

Much as the atmospheric weather space weather effects have a
long-term trend, that is it is useful to study the space climatology.

The two players in this field are the Sun and its long-term
variations as well as the geomagnetic field with its dramatic polarity
reversals happening on a time scale of about every few 100,000 years.

Studying space climatology requires to study the complex coupled
system Sun-Solar Wind—-Magnetosphere-Atmosphere-Geomagnetic Field,
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a system much too complicated for our current understanding of
the underlying physical processes. Thus, first simple attempts are
required to tackle the complexity of this system. And we need
observations, from the past and reaching into the future. Long-term
trends, by their very nature, can only be studied if long lasting
records of the important parameters are available. Historic data as
well as proxi archives are the only means to access the past.

In this presentation some first attempts are made to understand space
climatology. Long-term variations of the Sun are briefly discussed,

while more emphasize is paid to the question of the magnetosphere and

its possible long-term variations. The magnetosphere and the geomagnetic
field are important as they moderate the precipitation of high-energy
galactic cosmic rays and solar particles into the terrestrial atmosphere.

Some simple scaling laws are discussed which will allow to learn about
the long-term variation of magnetospheric parameters such as the
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magnetopause distance, the polar cap width, plasma pause position,
ring current and polar electrojet strength as well as the topology of
the magnetospheric structure.

As a more general result one may state that with respect to the above
mentioned parameters long-term magnetospheric variations or space climate
changes are within the range of todays magnetospheric variability caused

by the ever changing solar wind. It is only during intervals of

geomagnetic polarity transitions when more drastic effects are expected.
However, current tools do not allow a very detailed analysis of the

expected effects. But it seems clear that significant modifications of

the atmospheric NO, and even the stratospheric ozon are to be expected
with direct implications for the terrestrial atmosphere.

Some of these possible effects are discussed.
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What is space climatology &
who are the players ?

How can we address the problem ?

What is the importance of the
geomagnetic field ?

How is the magnetosphere changing
in time ?

Are there effects on the atmosphere ?

What is Space Climatology ?

Space weather

- dynamic changes of the plasma environment of the Earth
and the planets, either internally or externally triggered

Space climate

- slow and long-term variations of our plasma environment

Space climatology

- studying the slower-acting influences on magnetospheric
systems




Space Climate Depends on....

- solar and solar wind conditions
— planetary magnetic fields and their variations
- internal processes of a magnetospheric system

— antropogenic influence (?)

Two Players and a Possible Victim




Player I: The Sun in Time
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Player II: The Geomagnetic Field
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The Geomagnetic Field and “C-Concentrations
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The Geomagnetic Field and Radiation Effects on Spacecraft
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The Geomagnetic Field — A Shield Against Radiation ?
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Polarity Transitions
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Scaling Relations for the Magnetosphere

Here, we make the assumption that the
geomagnetic field is always dominated
by its dipole component. Higher order

moments are neglected.

The dipole axis is assumed to be aligned
with the rotation axis.

The relations derived are simple, but
allow a first guess on what the
climatology of the magnetospheric
structure is.

Scaling the Magnetosphere

Magnetopause stand-off distance: Ry oc M3

where M is the magnetic moment
Tail radius: R, o« M3
Polar cap width: cos 0 oc M-1/6

Siscoe & Chen (1975), Vogt & Glassmeier, (2001)




The Magnetopause in Time
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Polar Cap and Equatorial Radiation at 350 km Height
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Radiation at shuttle height during solar minimum conditions, that is maximum galactic
cosmic ray conditions indicates an order of magnitude higher dose over the polar cap

Beaujean et al., 1999

Scaling the Plasmasphere

The convection electric field potential can be approximated by
O=npv B LR.sI@
The corotation electric field potential is given as

QEBERI%?
L

The plasmapause position may be approximated by

Q,.B.R, /
PP\/ /VBor LPPOC

P =




The Plasmasphere in Time
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Scaling the Polar Electrojets I

The polar electrojet magnetic field b is approximated
by the ionospheric Hall current

bG e ZH Eiono

where 3 ,, and E,,,, are the Hall conductance and the
ionospheric electric field

The auroral region ionospheric electric field scales as
Eione < W / 2 Rp €OS 0, oc M~1/2

where y o vg* By Ryp is the polar cap electric
potential




Scaling the Polar Electrojets II
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Here m, n, v, and Q are the mass, number density, collision

frequency, and gyro frequency of ionospheric electrons and
ions.

These scaling relations are justified if the influence of n(Height)

may be neglected.

Scaling the Polar Electrojets 111

The polar electrojet magnetic field scales as:
b o« M6
The external magnetic field increases with decreasing

internal field contribution




The Polar Electrojets in Time
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Glassmeier et al., 2002

Scaling the Ring Current

Dessler-Parker-Sckopke theorem: Dy o« Wi/ M
where Wy is the ring current total energy and D, its surface

magnetic field

Wi scales with the cross section of the magnetosphere and the
ring current volume:

Wge <R3 Ry

Thus, D,, o M23




Magnetospheric Configuration I

The magnetospheric magnetic field is the result of the superposition
of mainly two contributions

— — Li

:BW+BW

Total

where the Chapman-Ferraro currents at the magnetopause cause the
contribution B..

With the magnetospheric boundary condition

ﬁ'BTozal = (xyp)

Reference: G.H. Voigt, in: H. Volland, Handbook of Atmospheric Electrodynamics, Vol. I, chapter 11, CRC Press, 1995

Magnetospheric Configuration 11

and

—_

B ==V
one has a Neumann boundary value problem for the CF-contribution

acDCF =ty
=n: Int
on

V@, =0

=/ ()

With the boundary conditiony; . B — () ,which specifies a closed
magnetosphere, and prescribing the magnetopause shape allows
one

to determine the field topology as well as the CF-current density
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Magnetospheric Configuration: Dipole in a Sphere

—

Internal field due to dipole
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Magnetopause is a sphere

Z

Shift of dipole from center
simulates decreasing magneto-
pause distance

Cusp region moves to lower
latitudes for decreasing mp
position

The Paleomagnetosphere: Tilted Dipole

The polar cap moves to much lower latitudes during a reversal neuhaus et al., 2002




The Paleomagnetosphere: Quadrupole Situation

Now we have four polar cusp regions ! . .. s0l

Particle Motions in the Paleomagnetosphere
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Anja Neuhaus is working on the details..................




Effects of High-Energy Particles Precipitating
into the Atmosphere |

P.J. Crutzen, G.C. Reid, S. Solomon (1975, 1976, 1980):

Precipitation of high-energy protons into the atmosphere
cause the production of NOy and also impacts the ozon
budget of the stratosphere.

This is a proven process in the current atmosphere, but has
no atmospheric climate relevance due to its event character.

Effects of High-Energy Particles Precipitating
into the Atmosphere Il

What happens during times of small geomagnetic field ?

How is the high-energy particle precipitation moderated
by the geomagnetic field ?

Is there a possibility that the R-C-S mechanism has an
influence on the atmospheric climate ?




A First Approach: NO, Production
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A First Approach: Stratospheric O,
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A First Approach: Surface Temperature
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The University of Bremen Model Approach
2 D (latitude/altitude) time-dependent coupled chemical-dynamic
model of the atmosphere

Current magnetic field: precipitation into polar cap only

Polarity transition: precipitation isotropic

Modelled situation: 3 x October 1989 Solar Proton Event

Miriam von Konig et al., 2002




Ozon Column Density Change for Present Day Field
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NO, production and ozone loss due to SPEs are well reproduced by the model
Miriam von Konig et al., 2001

Ozon Column Density Change for Polarity Transition
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A change of magnetic field strengths has a potentially large impact on
stratospheric ozone, but restricted to polar regions and only if a period

of small magnetic field strengths coincides with a large solar activity




Summary

Space climatology is a new and demanding area of research

Long-term evolution of the solar activity and the geomagnetic field need
to be considered

Only during polarity transitions major effects on the NO, production in
the atmosphere due to increased energetic particle precipitation is
expected

The ,climate” variations of the magnetospheric structure and dynamics
are comparable to current solar wind induced variability for non-
transition times

Current proxi archives need to be refined to upgrad the observational
basis

New proxi archives are required

Long-term observations are required: We need geospace observatories

SUSTAIN: A Mission for Mars Colonization

Develope cheap and autonomous p-stations

measuring the magnetic field, temperature, and cosmics particle
flux

at various places on the Marsian surface

with the data read out accomplished in a hundred years or so.

Our grand-grand-grand-children will appreciate this when starting

to colonize our sister planet in future years.
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