Operational Aspects of Space Weather-Related Missions

Richard G. Marsden, ESA/SCI-SH

Outline

SOHO: Example of Near-Earth Observatory-class MissionUlysses: Example of Deep Space Monitor-class MissionSolar Orbiter: Example of Future Space Weather-related Mission
Summary

SOHO

The Solar and Heliospheric Observatory (SOHO) is a cooperative mission between ESA and NASA to study the Sun, from its deep core to the outer corona, and solar wind.

Key Mission Characteristics:Launch: Dec 1995Lifetime: approved until 2007Orbit: halo orbit around Sun-Earth L1 Lagrangian pointSun-pointing, 3-axis stabilized platformPayload: 12 sets of instruments (remote-sensing and in-situ)Tracking: DSN ($3 \times 1.6 \mathrm{hrs}$ and $1 \times 8 \mathrm{hr}$ pass per day)
Telemetry: 40 kbps (160 kbps for MDI high data rate mode during 8-hr pass)

SOHO Operations Concept

-Near-Real-Time Operations:

> Observatory-class Mission

> Typical Time Delays:

OTelemetry receipt by Ground Station => Experimenter (EOF) < 5 sec
OExperiment Command from EOF => SOHO < 1 min
$>$ EOF and EAF connected by 100 Mbps link
>PI Teams and Flight Ops Team Co-located
> Rapid Exchange of Complementary Data
OGround-based and other Space Observatories (e.g. TRACE)

SOHO Ground System

Ulysses

Ulysses is a cooperative mission between ESA and NASA to study the Sun and heliosphere in 3 dimensions.

Key Mission Characteristics:Launch: Oct 1990
\square Lifetime: approved until Sep 2004
\square Orbit: heliocentric orbit inclined at 80° to the ecliptic planeEarth-pointing, spin-stabilized platform (5 rpm)
\square Payload: 9 sets of instruments (in-situ particles and fields; gamma-ray bursts)
\square Tracking: DSN (1 x 10 hr pass per day)
\square Telemetry: 0.5 kbps (1 kbps real-time mode)

Ulysses

Ulysses

cesa

Ulysses Operations Concept

DNon-Real-Time Operations:

$>$ Monitoring-class Mission
$>$ No Ulysses EOF / EAF (Formal interface between PI Teams and Flight Ops Team is via e-mail and/or dedicated fax number)
$>$ Spacecraft Operations Team (ESA personnel) located at JPL
> Typical Time Delays:
One-Way Light Time (OWLT) up to 52 min
OTelemetry receipt by Ground Station => Experimenter

- Quick-look data < 30 min
- Final Experiment Data Record < 18 days

Experiment Commanding via SOT (3-week lead time)

Ulysses Ground System

Solar Orbiter

A High-resolution Mission to the Sun and Inner Heliosphere

Solar Orbiter

Solar Orbiter is a future ESA mission to study the near-Sun environment, using a combination of in-situ and remote-sensing observations. Solar Orbiter will also image the polar regions for the first time.

Key Mission Characteristics:
\square Launch: 2011/2012
\square Orbit: heliocentric with heliosynchronous phase (perihelion 0.21 AU) and high-inclination phase (up to 38° latitude)Sun-pointing, 3-axis stabilized platformSolar Electric Propulsion
\square Payload: remote-sensing and in-situ instrument packages
\square Operations: highly autonomous (esp. during perihelion passes)

Novel Orbital Design

- Projected trajectory

- closer to the Sun
- out of the ecliptic
esa

Fixed Sun-Earth View

Solar Orbiter trajectory in fixed Sun-Earth coords.

Nominal Mission

