Operational Aspects of Space Weather-Related Missions

Richard G. Marsden, ESA/SCI-SH

Alpbach Summer School 2002

30 July 2002

Outline

- SOHO: Example of Near-Earth Observatory-class Mission
- ☐ Ulysses: Example of Deep Space Monitor-class Mission
- Solar Orbiter: Example of Future Space Weather-related Mission
- Summary

SOHO

The Solar and Heliospheric Observatory (SOHO) is a cooperative mission between ESA and NASA to study the Sun, from its deep core to the outer corona, and solar wind.

Key Mission Characteristics:

- ☐ Launch: Dec 1995
- ☐ Lifetime: approved until 2007
- Orbit: halo orbit around Sun-Earth L1 Lagrangian point
- Sun-pointing, 3-axis stabilized platform
- Payload: 12 sets of instruments (remote-sensing and in-situ)
- Tracking: DSN (3 x 1.6 hrs and 1 x 8 hr pass per day)
- Telemetry: 40 kbps (160 kbps for MDI high data rate mode during 8-hr pass)

Alpbach Summer School 2002

30 July 2002

SOHO Operations Concept

■Near-Real-Time Operations:

- Observatory-class Mission
- > Typical Time Delays:
 - **○**Telemetry receipt by Ground Station => Experimenter (EOF) < 5 sec
 - **OExperiment Command from EOF => SOHO < 1 min**
- ► EOF and EAF connected by 100 Mbps link
- PI Teams and Flight Ops Team <u>Co-located</u>
- Rapid Exchange of Complementary Data
 - **○** Ground-based and other Space Observatories (e.g. TRACE)

Alpbach Summer School 2002

30 July 2002

SOHO Ground System

Ulysses is a cooperative mission between ESA and NASA to study the Sun and heliosphere in 3 dimensions.

Key Mission Characteristics:

- ☐ Launch: Oct 1990
- Lifetime: approved until Sep 2004
- ☐ Orbit: heliocentric orbit inclined at 80° to the ecliptic plane
- ☐ Earth-pointing, spin-stabilized platform (5 rpm)
- Payload: 9 sets of instruments (in-situ particles and fields; gamma-ray bursts)
- ☐ Tracking: DSN (1 x 10 hr pass per day)
- ☐ Telemetry: 0.5 kbps (1 kbps real-time mode)

Alpbach Summer School 2002

30 July 2002

Ulysses

Ulysses

Alpbach Summer School 2002

30 July 2002

Ulysses Operations Concept

■Non-Real-Time Operations:

- Monitoring-class Mission
- No Ulysses EOF / EAF (Formal interface between PI Teams and Flight Ops Team is via e-mail and/or dedicated fax number)
- Spacecraft Operations Team (ESA personnel) located at JPL
- ➤ Typical Time Delays:
 - One-Way Light Time (OWLT) up to 52 min
 - **○**Telemetry receipt by Ground Station => Experimenter
 - Quick-look data < 30 min
 - Final Experiment Data Record < 18 days
- Experiment Commanding via SOT (3-week lead time)

Ulysses Ground System

Alpbach Summer School 2002

30 July 2002

Solar Orbiter

A High-resolution Mission to the Sun and Inner Heliosphere

Solar Orbiter

Solar Orbiter is a future ESA mission to study the near-Sun environment, using a combination of in-situ and remote-sensing observations. Solar Orbiter will also image the polar regions for the first time.

Key Mission Characteristics:

- Launch: 2011/2012
- □ Orbit: heliocentric with heliosynchronous phase (perihelion 0.21 AU) and high-inclination phase (up to 38° latitude)
- Sun-pointing, 3-axis stabilized platform
- Solar Electric Propulsion
- Payload: remote-sensing and in-situ instrument packages
- Operations: highly autonomous (esp. during perihelion passes)

Alpbach Summer School 2002

30 July 2002

Novel Orbital Design

Projected trajectory

- closer to the Sun
- out of the ecliptic

Fixed Sun-Earth View

Solar Orbiter trajectory in fixed Sun-Earth coords.

Alpbach Summer School 2002

30 July 2002

Nominal Mission

