Space weather forecasting

Henrik Lundstedt Swedish Institute of Space Physics, Lund, Sweden www.lund.irf.se

Contents

- Solar activity the driver of space weather
- Forecast methods
- Applications
- Implementations for users
- Forecast centers (ISES/RWCs)

Solar activity, space weather and climate

• The positive NAO index phase

- shows a stronger than usual subtropical high pressure center and a deep than normal
- Icelandic low. The increased pressure difference results in more and stronger winter storms crossing the Atlantic Ocean on a more northerly track.
- This results in warm and wet winters in Europe and in cold and dry winters in northern Canada and Greenland.
- The eastern US experiences mild and wet winter conditions.

The negative NAO index phase

- . The negative NAO index phase shows a weak subtropical high and weak Icelandic low. • The reduced pressure gradient
- results in fewer and weaker winter storms crossing on a more west- east pathway.
- They bring moist air into the Mediterranean and cold weather to northern Europe.
- The US east cost experiences more cold air outbreaks and hence snowy winter conditions.
- · Greenland, however, will have milder winter temperatures.

During the Little Ice Age, London's Thames River froze in winter, something that no longer happens. This 19th century engraving depicts the annual Frost Fair held on the ice-bound river, this one during the winter of 1683-84.

MDI/SOHO reveals the interior and explains surface activity

MDI shows how the dynamo changes (1.3y)

Sunspots are footpoints of emerging magnetic flux tubes

MDI shows how magnetic elements form sunspots

Wavelet power spectra reveals solar activity periodicities

Wavelet power spectra shows 13,5, days 27 days, 154 days, 1.3 years periodicities

The solar magnetic field further expand and CMEs occur

Wavelet power spectra of MDI magnetic mean field

Upper panel shows for 53 CME events. Lower panel shows for times without CMEs.

Knowledge (Diff eqs of physics dynamical system analysis filters

Artificial Neural networks

The basic element of every ANN is an artificial neuron or simply a neuron (which is an abstract model of a biological neuron (nerve cell)).

The neuron receives signals (information) from other nerve cells thru the dendrites. The axons take information away from the neuron. The output of the neuron is $y=f(\Sigma w_i x_i)$, with x as input vector. The value y is the state of the neuron. If f=sgn then the state of the neuron is (+1,-1).

Neural networks

Download Lund Dst model in Java and Matlab (www.lund.irf.se/dst/models)

The ARMA filter is obtained by adding auto-regressive terms to a MA filter. The partial recurrent network (Elman) becomes identical to a linear ARMA filter if it is assigned linear activations functions

- 1. Set $\mathbf{x} = (0.39, 0.22, -0.83, 0.14)^T$.
- 2. Get the first observation of B_z , n, and V.
- 3. Compute $\mathbf{u} = (u_1, u_2, u_3)^T$ from Eq. 7.
- 4. Compute $\mathbf{x} \leftarrow \tanh \left(\mathbf{W}^{(1)}\mathbf{u} + \mathbf{W}^{(c)}\mathbf{x} + \mathbf{b}^{(1)} \right).$
- 5. Compute $y \leftarrow \mathbf{w}^{(2)}\mathbf{x} + b^{(2)}$.
- 6. Compute Dst from Eq. 8.

-D_e(t+1)

- 7. Get the next observation of B_z , n, and V.
- 8. Go back to step 3.

(8)

Dst = 150y - 100.

The normalization transforms $B_z \in [-30, +30]$ nT, $n \in [0, 120]$ cm⁻³, $V \in [200, 1000]$ km/s, and $Dst \in [-250, +50]$ nT to the [-1, +1] interval.

The output from the network is described by the following equations

$$x_{i}(t+1) = \tanh\left(\sum_{j=1}^{n_{1}} w_{ij}^{(1)} u_{j}(t) + \sum_{j=1}^{n_{c}} w_{ij}^{(c)} x_{j}(t) + b_{i}^{(1)}\right)$$
(9)
$$y(t+1) = \sum_{j=1}^{n_{2}} w_{i}^{(2)} x_{i}(t+1) + b^{(2)}.$$
(10)

Test Dst forecasts

Knowledge-Based Neural Models

The basis of using neural networks as mathematical models is "mapping". Given a dynamic system, a neural network can model it on the basis of a set of examples encoding the input/output behavior of the system. It can learn the mathematical function underlying the system operation (i.e. generalize not just fit a curve), if the network is designed (architechure, weights) and trained properly (learning algorithm).

Both architechure and weights can be determined from differential equations which describe the causal relations between the physical variables (solution of diff eq is approximized by a RBF). The network (KBN) is then trained with observations.

The architechure (number of input and hidden nodes) can also be determined from dynamic system analysis (reconstruction of state space from time series gives dimension).

Neural networks can discover laws from regularities in data (Newton's law e.g.). If one construct a hierachy of neural networks where networks at each level can learn knowledge at some level of abstraction, even more advanced laws can be discovered

Workshops arranged by us

Workshops on "Artificial Intelligence Applications in Solar-Terrestrial Physics" were held in Lund 1993 and 1997.

Applications

- Forecasting solar wind velocity
- Forecasting Geomagnetic activity
- Tables summarizing forecasts based on KBNM

Forecasts of solar wind velocity from daily solar WSO magnetograms

Input

A time-series $f_s(t - 4), ... f_s(t)$ of the expansion factor $f_s(t),$ $f_s = (R_{ps}/R_{ss})^2$ $B_{ps}/B_{ss}.$

Output

Daily solar wind velocity V(t + 2) (---)

With the use of MDI data (short-term solar activity) we will try to forecast hourly V

Forecasting global Dst and AE indices

Forecasts of Dst index Two hours ahead from only solar wind data based on an Elman recurrent neural network.

Forecasts of AE index one hour ahead from only solar wind data based on a Time Delay Network.

Forecasting local geomagnetic activity and interpretation

A hybrid (MLP, RBF) neural network was applied to data from Sodankylä Geomagnetic Observatory. It was shown that 73% of the ΔX variance is predicted from solar and solar wind data as input.

Number of context nodes gives the dimension of magnetospheric dynamic system. Weights give decay time τ .

Ap	plicatior	15	
Input parameters	Output	KBNM method	Reference
Daily sunspot number	Daily sunspot number	SOM and MLP	Liszka 93;97
Monthly sunspot number	Date of solar cycle max and amplitude	MLP and Elman	Macpherson et al., 95, Conway et al, 98
Monthly sunspot number and aa	Date of solar cycle max and amplitude	Elman	Ashmall and Moore 98
Yearly sunspot number	Date of solar cycle max and amplitude	MLP	Calvo et al., 95
McIntosh sunspot class & MW magn complex.	X class solar flare	MLP expert system	Bradshaw et al., 89
Flare location, duration X-ray and radio flux	Proton events	MLP	Xue et al., 97
X-ray flux	Proton events	Neuro- fuzzy system	Gabriel et al., 00
Photospheric magnetic field expansion factor	Solar wind velocity 1-3 days ahead	RBF & PF	Wintoft and Lundstedt 97:99

Applications

Input parameters	Output	KBNM method	Reference
Solar wind n, V, Bz	Relativistic electrons in Earth magnetosphere hour ahead	MLP	Wintoft and Lundstedt, 00
Solar wind n,V, Bz, Dst	Relativistic electrons hour ahead	MLP, MHD, MSFM	Freeman et al., 93
ΣΚρ	Relativistic electrons day ahead	MLP	Stringer and McPherron, 93
Solar wind V from photospheric B	Daily geomagnetic Ap index	MLP	Detman et al., 00
Ap index	Ap index	MLP	Thompson, 93
Solar wind n, V, Bz	Kp index 3 hours ahead	MLP	Boberg et al., 00
Solar wind n, V, B,Bz	Dst 1-8 hours ahead	MLP, Elman	Lundstedt, 91; Wu and Lundstedt, 97
Solar wind n, V, B,Bz	AE 1 hour ahead	Elman	Gleisner and Lundstedt, 00

Applications

Input parametrs	Output	KBNM method	References
Solar wind V^2B_s , $(nV^2)^{1/2}$, LT, local geomag Δx^e , ΔY^w	Local geomagnetic field ΔX , ΔY	MLP and RBF	Gleisner and Lundstedt 00
Solar wind n,V, Bz	None, weak or strong aurora	MLP	Lundstedt et al., 00
foF2	foF2 1 hour ahead	MLP	Wintoft and Lundstedt, 99
AE, local time, seasonal information	foF2 1-24 hours ahead	MLP	Wintoft and Cander, 00
foF2, Ap, F10.7 cm	24 hours ahead	MLP	Wintoft and Cander, 99
ΣΚρ	Satellite anomalies	MLP	Wintoft and Lundstedt 00
Solar wind n, V, Bz	GIC	Elman, MLP	Kronfeldt et al., 01

Real-time forecasts and warnings based on KBN

Solar input data

Solar observations with SOHO make warnings 1-3 days ahead possible.

Solar wind observations with ACE make accurate forecasts 1-3 hours ahead possible.

Satellite anomalies of July 14-16, 2000 event

The proton event caused problems for ACE, SOHO, Ørsted, Japanese X-ray satellite, star trackers on board commercial satellites. <u>Proton flux (pfu) > 10 MeV</u>,

24000 pfu (July 15, 12.30 UT). Third largest!

Largest 43 000 pfu, (March 24, 1991). Second 40 000 pfu (October 20, 1989).

Today IRF-Lund has real-time neural networks forecasts of satellite anomalies one day in advance (ESA project SAAPS). The work has been in collaboration with Swedish satellite operators (ESRANGE).

Radiation risks and aviation

The radiation exposure is doubled every 2.2 km.

Solar flares can increase the radiation by 20-30 times.

Pilots get cancer more often than average.

New EU law: Pregnant (aircrew) should not be exposed to more than 1 (1-6) millisievert/year

The intensive solar flare of April 2, 2001, which caused major communication problems also made Continental Airlines to change their route between Hong Kong and New York.

IRF-Lund collaborates with the Swedish Radiation Protection Institute and Medical University in Stockholm to develop forecasts of radiation doses for Aviation Industry.

Power systems and pipeline systems are effected at times of geomagnetic storms

This severe electrojet caused the failure of Quebec's power system March 13-14, 1989.

One of the generators of OKG's (Sydkraft's) nuclear plants was heated due to the geomagnetically induced current in March 13-14 1989.

Measured (SydGas) geomagnetically induced disturbance at time of the Nordic GIC meeting in Lund September 23-24, 1999.

We in Lund have collaborated with the Swedish power industry during more than twenty years. Today we have real-time neural network forecasts of local GICs, based on ACE solar wind and warnings based on SOHO (LASCO and MDI) data.

User of NAO forecasts

Proton events give positiv NAO within days!

- Norway experience cold winters during a negative NAO phase.
- Heating Oil consumption in Norway varies by 30% in good (anti) correlation with the NAO.
- Correlation with precipitation results in variability in hydropower generation.

Manin Ucheck Peb04, 200

A User: Power sytem operators

North Atlantic Oscillation and solar wind activity

The NAO response on increased solar wind E, one month later! That makes forecasts one month ahead possible.

11 års, 1.3 variations are seen both in solar wind and NAO.

ESA/Lund Space Weather Forecast Service

Near and farside solar activity from MDI/SOHO observations

Latest information on arrival of halo CME at L1

Latest info on forecasts of satellite anomalies (SAAPS)

Latest information on forecasts of Kp, Dst, AE and GIC

USER GUIDE What is Space Weather?	IRF	HF Comm. Condition	Latest Info	
Glossary <u>Visual Dictionary</u>	ACE	Geo- magnetic	Latest Info	Space Storm NOT Ongoing
Specific User Information Kp + Ds	+ AE + GIC forecasts			
Latest Kp-Forecast from: Tue Dec 04	10:00:00 CET 2001		Latest Info	
Kp Forecast Valid to: Tue Dec 04 13:0	0:00 CET 2001		- Datest Info	
Latest Dst-Forecast valid for: Tue Dec Forcasted Dst = -5 nT Det Forecast is undated avenue 10 minu	04 14:19:31 CET 2001			Warning
Latest AE-Forecast valid for: Tue Dec	04 14:55:01 CET 2001		Latest Info	
Forcasted AE = 3,043 nT AE Forecast is updated every 5 minute	·s.			
Latest GIC-Prediction from: Tue Dec 0- Predicted Current: -2,812 A	4 13:52:47 CET 2001			
GIC Forecast valid to: Tue Dec 04 14:	9:25 CET 2001		Latest Info	 Quiet
	Close	Forecast of		YES
	ACE	Kp, Dst, AE and GIC	Latest Info	
6000				

Forecasts of aurora as SMS, voice messages or WAP service

