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Outline

 Review Effects

 Focuson:
— Spacecraft Effects
— Effects to man
— Aircraft and Aircrew

« Parameters, assessment techniques,
requirements
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Effecits
» Satellites affected by radiation, plasma, atmosphere, particulates;
» Astronauts - ISS, future exploration missions;
» Radiation hazards to air crew and avionics;

* see www.esa.int/spaceweather
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Effects 1o Sarelliftes:

Debris,
hMeteor.

Cosmic Rays

Solar Flare
Particles
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Belt Particles hey

Energetic
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Low—energy
Plasma

Meutral
O-atoms
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Spacecraft Effecits

Radiation Effects are caused by:

» Total integrated ionising or non-ionising DOSE (is energy absorbed/unit
mass; an integral of the flux and the energy loss rate)

— aproblem for electronics, solar cells, materials, man

» Single Event Effects, including Single Event upset (non-permanent error in
a bit), single event transients (likewise for “analogue” circuits); latch-up
(destructive);

— aproblem for electronics and man

Plasma Effects due to:

» Electrostatic charging resulting in electrostatic discharge and EM pulses;
— aproblem for electronics

» Plasma interactions with “exposed active” systems — solar cell
interconnects; electric propulsion; payloads; tethers

Neutrals Cause:

* Drag, depending on atmospheric density

» Erosion of surfaces — the residual Oxygen is non-molecular and corrosive
* Contamination

29 June 2002 Alpbach Daly-2 / Effects in Technology 8

Effects on Satellites
Outages and Orbital Decay

High Energy Particles Cause
Single/ Event Upsets

A Denser Atmosphere
Causes More Drag

Low Energy Particles
Cause Charging

(
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Radiation

» The principal particles:
— Protons 0.1-300MeV {radiation belts, solar particle
events, cosmic rays}

— ITons 0.1-300MeV {cosmic rays, solar particle
events, (radiation belts)}

— Electrons 0.01 - 10MeV {radiation belts, (other
planets) ((solar)) }
e The main interaction is 1onisation
but other processes can be important sometimes
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Main Radiation Effects
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Effect Assessment Main

Parameter Interaction

Component Ionizing Dose |lonization

Degradation

Solar Cell Non-ionizing |Displacements

Degradation dose

SEU Rate Ionization

Radiation Rate Ionization

Background

Optoelectronic Non-ionizing |Displacements

Degradation dose

Astronaut Hazards |Dose Ionization

Equivalent
Internal Charging |Fields Ionization
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Radiation
Inferactions and Photoslectric Effect
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Secondary Radiaftion

» Effect can be produced by a secondary radiation

Source Secondary Physical Process Where it is
(primary) important
Electron Photon Bremsstrahlung Dose,
Background
Secondary electrons Delta rays Dose,
Background
Photon* Electrons Photoelectic ejection Dose,
Compton scatter Background
Pair production
Ions Secondary electrons ("delta rays") Dose,
Background
Low energy ions Spallation SEU,
Displacements,
Dose
Pions + exotic Nuclear interaction Background
Nuclear y-rays Deexcitation Background
Neutrons Nuclear interaction Astronauts,
Background

29 JiReeoodatipbach
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SOHO Image
“snowing’” on 14
July 2000

—

2000/07/14 1

2000/07/14 10:24
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“Single-event” effects

* aparticle crosses (“hits”) a (small) sensitive target

* the energy deposited causes a noticeable effect:
— 1onisation free charge causes
a bit to “flip”
— pixels of a CCD are “lit up”
by creation of free charge

— DNA 1s damaged

FAST CHARGED ENERGETIC
PARTICLE PROTON

DEPLETION REGION SN
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Cosmic Ray Fluxes and Composition
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Jlons can be highly ionising
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Solar Array Degradation

100
SOHO Solar Array Degradation
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Basic Radiation Assessmeni Process

| Select
orbit \ Sp e ley
environment
Select . .
component \ —
1 Select Select
Select /define payload solar cells
shielding
Can it Can it Can it
survive? survive? survive?
Don’t know
| Can it
survive?
Test
y
| (dose, p,
build NIEL’
ions)
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Depth (mm Al)

ISO Star Tracker

COES—Y Proton Flux

e Error rate increases
in small solar event

» provided software
can cope, this
phenomenon should
not lead to problems

* but there are several
cases of attitude
stabilisation loss

Maonth,/Day
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XMM: Radiation Damage fo Defecfors

Detectors (5 arrays)

Spectrometer

gratings
mirrors
Orbit
48-hr Highly eccentric
Apogee: 115000
Perigee: 7000km
Inclination: 40°
—Leads to potential degradation
of CCDs and to background from

soft protons entering the mirror shells
291

s, Space environmenfs and
Q\&i\fesa effects analysis section

Mirror Module of
XMM:

» 58 shells with
mm-sized gaps

e |

rY
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High Dispersion Reflection Grating Plate CCD strip at Secondary
Focus
X-ray diffracted
to CCD Strip
at secondary
focus

Gold Reflecting Surface

40% Dispersed X-rays

EPIC

50% Non Dispersed X-rays

Grating Stack CCD Camera At
SRR Moot Prime Focus

Focal Length 7500 MM
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Charging-related anomalies

« Often caused by hot plasma causing
electrostatic charging of outer surfaces

— Potential differences lead to discharges

» Also caused by energetic electrons getting
inside materials and stopping

— High electric fields lead to breakdown discharges

29 June 2002 Alpbach Daly-2 / Effects in Technology 28
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Spacecrafi Charging

* Many satellites experience “anomalies”
which do not lead to satellite loss

» c.g. ESA satellites Marecs, ECS, and A Thermal
Meteosat in 1980’s-90’s | " Blanket

e ANIK-E1 & E2 failures in 94 & 96

 ( Telstar 401 failure on 10% Jan 1997
following CME on 7% - not charging?

Energetic Electrons

* Galaxy4 satellite anomaly led to pager 7 Ie \ nsulators

network outage - not charging? )

Courfesy
Qinetiq

» For service providers, price of inadequate
hardening can be loss of spacecraft and
expensive compensation / litigation

« To protect is also expensive as shielding
mass is costly

29 June 2002 Alpbach Daly-2 / Effects in Technology 29
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Behaviour of Average Energetic Electron
Flux before a Mefeosal Status Anomaly
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Charging-Induced Anomalies
Anomalies on the morning si ring storms
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Eguvafor-S Fajlvre

Back-up CPU Fails

Enhanced Hot Electrons

December 97

Primary CPU Fails

GOES Energetic Particle
Data Courtesy NOAA

April 98
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Globalstar

(Space Systems Loral’s “Big LEO” global mobile communications network)

“Phone satellite operator Globalstar in
August 2001 confirmed the failure of

8 three of its 48 operational spacecraft

& during 2001, probably caused by the

§ maximum of solar activity in 2001. The
& company said it was able to restore

& service to one of the satellites, which 1s
. now processing calls as usual”.

. Globalstar statement: "Earlier this year [2001], we detected anomalous behavior in three Globalstar satellites and
removed them from service. After several months of analysis and testing, the company was successful in restoring
service to one of the satellites, which is now processing calls as usual. It has also been determined that the remaining
two satellites have failed, and two on-orbit spare satellites are now being manoeuvred into position to replace them,
one in September and one in November.

. "The cause of the satellite failures has not been determined with certainty, but it appears likely that they were caused by
a temporarily severe space environment. These environmental conditions have now passed and are not expected to
return for 10 or more years." http://www.globalstar.com/EditWebNews/208.html
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Canadian experiences (800 evenis over
25 years, courfesy Telesaft Canada*)

Anik-E momentum wheel
electronics provide an excellent
example of an unambiguous
space-weather-related failure **.

Conversely, the investigation of
the March 1996 Anik-E1 power
failure showed that, although
initially suspected of being so, it
was in fact not related to space
weather.

** Evans, J. and Gubby, E. R., “Ground Loop Attitude
Control System for the Anik-E Satellites” International
Union of Radio Science XX VIth Assembly, University
of Toronto 16 August 1999

Anik-A’s

. 11 uncommanded mode switches of telemetry encoders.

Anik-B

*  One earth sensor mode switch, believed to be caused by optical
solar reflector discharge.

Anik-C’s

*  Cl and C2 had only a few phantom commands (i.e. mode
changes, unit turn-on/off);

¢ C3 had more than 100 such events.

Anik-D’s

* D1 had only 3 events (uncommanded mode switches);

« D2 suffered a major service outage on 8 March 1985, when
multiple events occurred simultaneously.

Anik-E’s
*  Many phantom commands, especially RF amplifiers;

. On 20 Jan 1994 both momentum wheel electronic units failed
on E2, one failed on E1;

. Several RF amplifier failures.

MSat

*  Many phantom commands;

*  Very large number of RF amplifier failures.
Nimiq

* A few phantom commands (as of Oct 1999)

* SPACE ENVIRONMENT EFFECTS AND SATELLITE DESIGN, Robin Gubhby & John Evans,

JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 1999
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Assets in Space - Satellite Insurance

Total value of more than 600 satellites currently in orbit is about $50-100 billion
— 235 of these are insured (value: $20 billion)

Growing market: 1500 space payloads are expected to be launched the next 10 years
— potential insured value $80 billion
$1,600,000,000

$1,400,000,000

10on| Planned Satellite Launches EPremium
$1,200,000,000 | m .
o Claims
Z80g| LowEarthand $1,000,000,000
= Medium Earth Orbit
3600 $800,000,000 1
fay
S 00 $600,000,000
Il
-g $400,000,000
22rinln H H
< Geosynchronous Earth Orbit $200,000,000
0

1996 1998 2000 2002 2004 $0
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
(11/12)

This charts shows total claims, not only space weather related

Source: USAU
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Space Crew Effects

- single break
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Doses o crew

US/ESA Astronaut limits

‘ Exposure Interval ‘ Blood Forming Organs ‘ Eye ‘ Skin | ¢ Qctober ‘89 solar event:
‘ 30 Days ‘25 rem ‘ 100 rem ‘ 150 rem EKGZ 68%% 111 %% F\I;EEl\'(l/I,

in: -17 :
‘Annual ‘SOrem ‘200rem ‘300rem BFEO- 90-113 REM

Carcer 150 - 400 rem [200 + 7.5(age - 30) for men] 400 rem | 600 rem
100 - 300 rem [200 + 7.5(age - 38) for women)] .
« Fatality ~400 REM /30d;
age man woman 0
20 | 1% | 65 oosE (Ao /oY) va T Rad" sickness ~100
25 162.5 102.5 400 - REM
30 200 140 2o e
35 2375 | 1775 | _ T
40 275 215 > 100 e . . .
5 3125 [ 5] ° o » Occupational limits
50 350 | 200 |2 * ; 1.5-5REM
55 3875 | 8275 | S 2o
60 425 365 | & |,
65 | 4625 | 4025 s * Public limit <1 REM/yr
4 1 —
2
120 i Tiilil i Eél) i 2510 i Z:BD i 3=ZD ; 360
FLT ALTITUDE (NM)
3 MIN MEASURED DOSE 2 MAX MEASURED DOSE
Figure 2. Absorbed dose to crew for 25 5 degree inclination Space Shuttle flights
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Radiation Enhancements in the Afrmosphere
-Altitvde & latituvude variations
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Measvremen?t and Assessment
Regqguiremenis
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““Top Level”

(1. Extracting accurate specifications from a good statistical basis.

1 2. Forecasting the long term space environment conditions for
S spacecraft design.

3. A posteriori determination of the condition of the space

J environment that prevailed at dates requiring in depth analysis
or data quality label (e.g. date of spacecraft anomaly or date of
scientific data collection).

4. Evaluating in real-time whether the space environment
conditions are compatible with planned operations or are
requiring specific actions.

5. Forecasting the short to medium term space environment
conditions for operation planning.
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Paramefters and their Measurement?

Effect \ Parameter | Derivation | Instrument | Location
Spacecraft:
Rad Damage dose flux Dosimeter or flux meter | Local or
(e to 10MeV, p to mapper
200MeV)
Rad damage sol Non-ionising flux Flux meter (e to 2MeV, p | Local or
array dose to 10MeV) or NI dose mapper
sensitive device
SEU Ton fluxes flux Spectrometers (ion Local or
species + energies to 200 | mapper
MeV/u)
Charging Internal fields External Spectrometers (e to Local
(internal) electron spectra | 10MeV)
Charging Charging levels Spectrometers (from eV | Local
(external) or plasma e and to 50keV), Langmuir
ion spectra probes,
Charging plates
Astronauts Dose equivalent | Dose from flux | Tissue equivalent meters; | Close to crew
or directly; dosimeters, Outside vehicle
composition of | spectrometers
radiation
Warnings Solar X-rays, imagers Any
UV /CME
launch
Aircraft:
Crew Dose Neutron flux or | Dosimeter or Neutron Local
dose monitor
Electronics SEU Neutron flux SEU monitors or Local
Neutron monitors
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Near Real-Time Dala

Component Available Caveat Delay before
Measurement availability
Galactic cosmic rays: Neutron monitor Proxy 1 hour
100 MeV to 1 GeV (ground)
Neutron monitors Proxy 1 hour

Only above ~400 MeV

SPE particles: 100 GOES Require model at low 5 min
keV to ~100 MeV ACE altitude
X, EUV, UV photons GOES 5 min
SOHO
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Near Real-Time Dalca

Component Available Caveat Delay before
Measurement availability
Magnetopause GOES Only 2 points at GEO 5 min

boundary location

ACE Input to model 5 min
Plasma: 0.1 to 100 TEC Integrated value 1 hour
eV NPOES Only at 830 km altitude 1 hour
Plasmasheet and LANL Only at GEO 1 day
auroral Electron NPOES Only at 830 km 1 hour
energy spectrum Kp Proxy 1 day
(100 eV to 20 keV) A Proxy 1 day
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Component

Radiation belts
proton energy
spectrum 1 MeV to
1 GeV

Radiation belts
electrons energy
spectrum 100 keV
to 10 MeV

Thermospheric flux

29 June 2002 Alpbach

Available
Measurement

GOES

NPOES

GOES
LANL
NPOES
Kp

F10.7
Kp
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Near Real-Time Dafta

Caveat

Only at GEO

Reduced energy range

Only at 830 km

Only at GEO
Only at GEO
Only at 830 km
Proxy

Proxy

Input to model
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Delay before
availability

5 min

1 hour

5 min
24 hours
1 hour
1 day
1 day

Once a day
1 day
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Forecas¥t: Precursor

Phenomenon

Flare

CME

ICME

SPE

Substorm

Storm

Tonospheric and thermospheric

change
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Tracer

X, UV, Vis, MeV protons

Vis image

Radio
Interplanetary scintillation

MeV protons

AE, Kp
NPOES

Kp
GOES
LANL
TEC
Radars
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Precursor

Sunspot
Magnetic structure

Sunspot

CME

CME

IMF Bz <0

EUYV from backside
IMF Bz <0
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Improvemenis Needed

« Data coverage: Lacking especially:
— eV to keV electron environment at high altitude
— Rad environment from 100 keV to 1 MeV at high altitude
— Thermospheric flux
* Long term continuity:
— Scientific data disappear after end of mission (Yohko, SOHO,
ACE, ...Triana).
— Ground observatories are not eternal either.
» Reliability:
— Mainly depending of US data & data provision system,;

— Data distribution to Europe is internet based with relatively poor
reliability and quality check. Bad access to models.

* Models accuracy:

— First principle models are not in general intended for operational
purpose.

— Empirical models can be run fast but are still in their infancy and
require more data (especially for extreme events).
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Engineering solufions

* Design to worst-case is currently more common
than use of space weather warnings:

— uses pessimistic environment assessment and shielding
assessment resulting in:
* mass penalty for over-design
* use of over-engineered (e.g. hardened) parts

» Risk assessment:

— based on statistical models of (for now) solar energetic
particle fluences

— 1s a more rational way to take decisions

« Better understanding of risk of the worst-case can
lead to relaxing margins: lowering costs
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Practical Application

» For engineering studies of space
environments and effects, a popular system
1S Spenvis

* Space Environment Information System

— has help, links to environment standard,
background information, etc.

— has orbit generation etc.
— Has all the models needed

— so all 1s under one system
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Design of Sysfems

» General principle: know the threat and the system well

» Data handling and similar systems:
— SEU’s, Latch-up,,...
— Effects in linear devices: SEU, SET
— consider the application and its tolerance to upsets
— consider the implications at system level
— error and failure recovery
* Imaging systems
— AOCS: star trackers: anticipate the response and ensure
software can cope

— Payloads: very sensitive science systems need background
removal - necessitates detailed simulation and validation
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Operations

* Manned example already well established:
NASA-JSC system uses NOAA resources

» Science mission instrument shut-off
e.g. XMM, Integral take action if hazardous
conditions are detected

« Launch authorities can delay launches
(e.g. rapid decision taken for Cluster-II launch on July

16 “00)
* Reliability of forecast 1s a major obstacle
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Conclusions

* Space weather (and space environment) effects to
spacecraft are a serious and growing concern — results
in a large cost impact

« Hazards to humans in space will become critical
beyond low orbit;

» Hazards to aircraft crew important and recognised by
EU legislation

» Effects on aircraft electronics may have to be more
thoroughly worked on
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