Giovanni Lapenta for the elleroes Consortium

Centrum voor Plasma-Astrofysica Katholieke Universiteit Leuven BELGIUM

This research has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement n° 284461 (eHeroes project, www.eheroes.eu). .

The Goal

Understanding the conditions and the threats in the space environment for the manned and robotic missions of exploration heading to the Moon, Mars and beyond

Image courtesy of ESA

SOTERIA EC to continue as eHeroes eheroes.eu

Participant short name	Participant organisation name	Country
KU Leuven	Katholieke Universiteit Leuven	Belgium
SRC-PAS	Space Research Centre, Polish Academy of Sciences	Poland
NOVELTIS	NOVELTIS SAS	France
LPI	P.N. Lebedev Physical Institute, Russian Academy of sciences	Russian Federation
UOulu	Oulun Yliopisto	Finland
UCL	University College London	UK
UNIGRAZ	Universitaet Graz	Austria
ROB	Royal Observatory of Belgium	Belgium
HVAR	Hvar Observatory, Faculty of Geodesy, University of Zagreb	Croatia
KO	Konkoly Observatory	Hungary
CNRS- OBSPARIS	Observatoire de Paris, LESIA	France
UCT	University of Catania	Italy
INAF	Istituto Nazionale di Astrofisica - National Institute for Astrophysics	Italy
PMOD-WRC	Schweizerisches Forschungsinstitut für Hochgebirgsklimaund Medizin Davos	Switzerland
UGOE	Georg-August_Universität Göttingen Stiftung Öffentlichen Rechts	Germany

Overview of the Space Covered by eHeroes

Structure

WP No	Work package title	Leader	Lead Beneficiary
1	Management	Giovanni Lapenta	KU Leuven
2	Value-added Data on Solar Sources	Andras Ludmany	КО
3	Solar and Space Events and their Evolution	Lidia van Driel- Gesztelyi	OBSPARIS
4	Exploring Space in Time	Kalevi Marsula	UOulu
5	Impact on Space Exploration	Sergey Kuzin	LPI
6	Dissemination	Petra Vanlommel	ROB

WP1: Management

eHeroes

WP2: Value-added Data on Solar Sources

Hinode: sunspot

Source: matter, magnetic fields Coronal mass ejections Flares

Relevance to space weather and climate:

- photospheric flare precursors
- analysis and extrapolation of magnetograms
- sources of the solar wind
- high-cadence irradiance variation and modelling

WP3: Solar and Space Events and their Evolution

SDO: prominence

Event precursors

Observations, modeling and simulations of CME initiation and flare energy release

Source region, acceleration mechanisms and interplanetary propagation of SEPs

Evolution of CMEs and ICMEs in the heliosphere over large distances

Dissemination of fast eventanalysis

WP4: Exploring Space in Time

Focus on long term, climate of space to design mission timeframe

- Activity forecasting methods
- Optimum parameters for the spatial-temporal distribution of flares and CMEs

Maps of spatial-temporal distributions of flares and CMEs

WP5: Impact on Space Exploration

Exploring the heliospace with multiple satellites, a data assimilation-based optimisation approach.

Perils, threats, operation:

- Missions to the Near Earth Environment
- Mission to the Moon
- Mission to Mars

Variability of particle environment Computer simulation:

- environment of spacecrafts
- Moon environment

KU Leuven Position open on computer simulation for space exploration

PIC kinetic modelling of:

- Global Lunar interaction with its environment (solar wind or magnetosphere)
- Lunar surface and magnetic anomalies
- Man-made probes (e.g. solar orbiter, solar probe)

Collaboration with NASA Lunar Science Institute: simulation of lunar dust impact, Artemis data

WP6: Dissemination

Hitchhikers' guide to space

The Space Weather News

Information

Space Weather School

Swiff.eu

Coordinator: Giovanni Lapenta

Centrum voor Plasma-Astrofysica

Katholieke Universiteit Leuven

BELGIUM

SWIFF: Space Weather Integrated Modelling Framework swiff.eu

Collaborative Project FP7- Space

Create a mathematical-physical framework to integrate multiple-physics (fluid with kinetic)

Focus on coupling small-large scales

Federation of models based on physical and amthematical understanding of the coupling

Physics-based rather than software-based

Founding approach: implicit, adaptivity and multilevel

Science Lead	Participant organisation name	Country
Coordinator: G. Lapenta	Katholieke Universiteit Leuven	Belgium
V. Pierrard	Belgian Institute for Space Aeronomy	Belgium
F. Califano	Università di Pisa	Italy
A. Nordlund	Københavns Universitet	Denmark
A. Bemporad	Astronomical Observatory Turin - Istituto Nazionale di Astrofisica	Italy
P. Travnicek	P. Travnicek Astronomical Institute, Academy of Sciences of the Czech Republic	
C. Parnell	University of St Andrews	UK

eHeroes

Challenges of space weat

Multiple scales

HARDY

Multiple physics

Space weather: Chain of events

eHeroe

Vertical integration: Multiscale challenge

Overall event duration: hours to days AU = 150 million Km (1.49 10^8 km) Solar Radius = 6.9 10^5 km Earth Radius = 6.4 10^3 km

Hero

Multiphysics: A plasma and its models

Kinetic approach: study the distribution function (probability of finding a particle with a given velocity in a given point at a given time):

 $\{x_p, v_p\} \qquad f(\mathbf{x}, \mathbf{v}, t)$

Motion of charged particles without magnetic field.

Motion of charged particles with magnetic field.

Fluid approach: study local averages (density, average speed, temperature,....)

 $n(\mathbf{x},t), \mathbf{U}(\mathbf{x},t), T(\mathbf{x},t)$

Different physics models at different scales

eHeroes

Multiscale – Multiphysics – Our Goals

SWIFF allows to bridge the micro-macro gap by increasing size and resolution by the needed 3 orders of magnitude

Horizontal integration – Multiphsyics challenge

eHeroes

Swiff 1: First release of our software tools

Swiff 1.0: Muliphysics with implicit moment method: FLUID to KINETIC

Swiff 1.0: MultiLevel – MultiDomain Approach

M.E. Innocenti et al.: A Multi Level Multi Domain Method for Particle In Cell Plasma Simulations, Journal of Computational Physics, submitted, Dec. 2011, http://arxiv.org/abs/1201.6208.

Hero

Advantages of the Implicit Approach

Explicit stability constraints

Implicit stability constraints

 $\frac{\Delta t \omega_{fastest}}{\Delta x / \lambda_{smallest}} < 1$

eHeroes

Example of Applocation to WP4: simulations of the Earth magntotail

3D evolution: micro-macro coupling

Lapenta, JCP, 2012 Several publications in 2011, 2012 Deliverable 2.1

The reconnection jets are deflected

Heroe

Strong electron flows cause micro-structures

AY

eHeroes

Advances provided by SWIFF: pre vs post SWIFF

	Explicit- Pre SWIFF	Implicit- Post Swiff	Gain
Dx	λ_{De} =100 m	d _e =10 Km	100
Dy	λ_{De} =100 m	d _e =10 Km	100
Dz	λ_{De} =100 m	d _e =10 Km	100
Dt	ω _{pe} Δt=0.1 or 10 ⁻⁵ s	$\omega_{pe}\Delta t$ =100 or 10 ⁻³ s	1000
Tot			10 ⁹

A SWIFF run that takes **1 day** would take: **2,800,000 years** with previous explicit codes

Co-Design and space weather at KU Leven

Intel Exascience Lab exascience.com

iwī

DEEP Project deep-project.eu

Dynamical Exascale Entry Platfor Coordinator: Thomas Lippert, Forschungszentrum Juelich GmbH

Towards Exascale with application to:

- Detailed brain simulation
- Space Weather
- Climate simulation
- Computational fluid engineering
- High temperature superconductivity
- Seismic imaging

Space Weather and Exascale Computing

Development of implicit PIC for GPU-based HPC

- Porting iPIC3D to nvidea GPUs using CUDA
- Redesign of the algorithm for hybrid architecture – Strong synergy with DEEP and Intel MICs.
- Adding collisions for conditions typical of some space systems (ionosphere and photosphere for example) and of laboratory plasmas

Job: phD student to develop and test implicit PIC on GPUs