An Architecture For Space Weather Services

Alfredo Pereira
CA³ : Soft‐computing and autonomous agents group @ UNINOVA, Portugal

ESTEC, December 18th 2002
Space Weather Workshop
Agenda

- **Rationale**
 - *The background behind the presentation and the identified opportunities for Space Weather Services*

- **An Architecture for Space Weather Services**
 - *A description of the architecture and its services provided*

- **Case studies**
 - *Projects inside ESA that have already used the concepts shown*

- **Conclusions & Future Work**
Agenda

- Rationale
 - Background @ ESA
 - Issues and Opportunities in Space Weather
- An Architecture for Space Weather Services
- Case studies
- Conclusions & Future Work
Presentation of CA3 group

- CA3 stands for Soft-Computing and Autonomous Agents
- It is a research group integrated in Uninova
 - a non-profit University-Enterprise Research Institute
 - located in the New University of Lisbon campus
CA³ group develops research mostly in the area of soft-computing

- Research areas
 - **Soft-Computing**
 - Fuzzy Logic
 - Decision Support Systems
 - Machine Learning
 - Data Mining
 - Optimisation Problems
 - Evolutionary Computation
 - Multi-Agent Systems (MAS)
On-going projects @ ESA

- The group is actively involved in projects for ESA (ESOC, ESTEC and ESRIN)
- In partnership with Spanish company GTD is developing R&D projects in:
 - Spacecraft Components Optimisation and Health Monitoring & Diagnostic
 - Decision Support systems for aerospace operations
- In partnership with Spanish companies Starlab and GTD:
 - Knowledge-Enabled Services for Earth Observation
Identified issues and opportunities in Space Weather

- Given our experience, this talk is clearly set on
 - Satellite operators (in our case ESOC)
- Creating innovative solutions for operations problems
- Has made us realize some issues and opportunities for Space Weather Services in this context
One of the best examples comes straight out of one of ESTEC’s sponsored studies.

Table A2.2. Assessment of current practice.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Current practice</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-orbit anomalies resulting in phantom commands, mode switching, corrupt memory, parts failure.</td>
<td>Anomalies are recorded. Operators try to identify cause, but this is often very difficult. Any identified cause is fed back to designers to improve future design. Some warnings and nowcasts are monitored so that staff can be on alert.</td>
<td>In general operators do not have expertise in space physics and enough data on the plasma environment at the spacecraft at the time of anomaly to identify the cause as space weather reliably. Some operators assign cause to space weather if all other causes can be eliminated. Feedback into design is very important but takes years. Requires data on SW events to identify any SW cause of anomalies.</td>
</tr>
<tr>
<td>Reduced satellite lifetime through reduction in solar cell power and...</td>
<td>Operators switch off some systems.</td>
<td></td>
</tr>
</tbody>
</table>

One of the best examples comes straight out of one of ESTEC’s sponsored studies. Here are some key points:

- **Low usage in operational contexts due to lack of technical knowledge of the subject matter of SW**
- **Attribution of anomalies to Space Weather is hard**
- **Low cycle of feedback from operations data to designer/manufacturer**

Table A2.2. Assessment of current practice.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Current practice</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-orbit anomalies resulting in phantom commands, mode switching, corrupt memory, parts failure.</td>
<td>Anomalies are recorded. Operators try to identify cause, but this is often very difficult. Any identified cause is fed back to designers to improve future design. Some warnings and payouts are</td>
<td>In general operators do not have expertise in space physics and enough data on the plasma environment at the spacecraft at the time of anomaly to identify the cause as space weather reliably.</td>
</tr>
</tbody>
</table>
Another view on the problem from our side

- No integration of Space Weather data & info with the rest of the mission exists
- Space Weather considerations are not necessarily included in the standard processes to operate the spacecraft
- No clear, simple, reliable and easy to use Space Weather data provider exists
Agenda

- Rationale
- An Architecture for Space Weather Services
 - Services provided
 - The architectural view
 - Enabling technologies
- Case studies
- Conclusions & Future Work
Space Weather Services proposed include:

<table>
<thead>
<tr>
<th>Service</th>
<th>Enabling technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nowcast of relevant space weather events with explanations and direct relationship with S/C data</td>
<td>• Data warehousing</td>
</tr>
<tr>
<td></td>
<td>• On-Line Analytical Processing (OLAP)</td>
</tr>
<tr>
<td></td>
<td>• Knowledge systems</td>
</tr>
<tr>
<td></td>
<td>• Fuzzy Logic</td>
</tr>
<tr>
<td>Space Weather Data analysis and exploration by end-users</td>
<td>• Data warehousing</td>
</tr>
<tr>
<td></td>
<td>• OLAP</td>
</tr>
<tr>
<td>Short-term (hours) forecasts for Environmental events, of most relevance to operations</td>
<td>• Data Mining, KDD</td>
</tr>
<tr>
<td></td>
<td>• Data warehousing</td>
</tr>
</tbody>
</table>
However some assumptions must be pointed out to understand the rationale of this solution

- This is a proposal for an infrastructural IT solution assuming that:
 - SW data is available in (near) real-time
 - Some NOAA provider or equivalent must exist
 - Scientific knowledge can be obtained from external sources/other partners and used in the implementation as an input
With the previous in mind a interesting opportunity also comes up

- An infrastructural generic approach, IT-oriented, makes possible the
- Opportunistic usage of available data at a given moment for a specific task
 - Usage of data without guarantees of coverage/availability
 - Usage of heterogeneous data sources simultaneously
 - Usage of results from the several Institutions and Research Centres in the Space Weather services when possible/valid
Enabling Technologies

1. Data Warehousing
2. Multi-dimensional functionalities: OLAP
3. Data Mining & Knowledge Discovery in Databases
4. Knowledge Systems
The architectural view

1. Data Warehouse
 - Extraction, Transformation and Loading
 - Relational Database Engine
2. OLAP Server
3. Data Mining Server
4. Space Weather Knowledge System

Data Mining Expert
Knowledge Expert

Spacecraft Data Source 1
- Environmental Data Source 1
- Environmental Data Source N
- Spacecraft Data Source 1
- Spacecraft Data Source N

Spacon Front-end
Spacecraft controller

SWENET
Knowledge Enabled Services

- Multi-agent system design
- Inference Engine: JESS & FuzzyJESS
- Knowledge Acquisition + Domain Ontologies: Protégé, CommonKADS
- Other engines: MatLab, etc
Agenda

- Rationale
- An Architecture for Space Weather Services

- Case studies
 - Solar Array Monitor
 - Radiation Monitor

- Conclusions & Future Work
In the context of the “Fuzzy Logic for Mission Control Processes” project @ ESOC

- Two problems that needed Space Weather services

Monitor and predict radiation perturbations caused by solar flares, Van Halen Belts, radiation spike hazards – in general –, ... in order to on-line decide survive strategies for the instruments, ranging from protective covers deployment, instrument shut-down and even orbit change recommendations.

Monitor and predict the accurate degradation of the solar panels on board spacecrafts.
Solar Array Monitor

- Orbital position data
- TM SPEVAL
- XMM Rad Sensors LELA
- Space Environment Data Provider NOAA

Database and Warehousing:
- MISSION Data Warehouse
- Extraction, Transformation and Loading
- Relational Database Engine
- OLAP Server
- Multi-dimensional cubes

Data Mining Environment:
- SAM Model Manager (MatLab)
- Data Mining Expert
- User

Software Tools:
- NovaView 3.0
- SQL Server 2000 Enterprise Edition
Agenda

- Rationale
- An Architecture for Space Weather Services
- Case studies
- Conclusions & Future Work
To conclude, time requirements and constraints can summarize all user requirements for this Space Weather Services architecture.

- The envisioned architecture could be an infrastructure for all of these scenarios.
- Quite distinct profiles can be accommodated:
 - Operator
 - Space Weather Scientist
 - Spacecraft manufacturer
 - End-user of another domain

The envisioned architecture could be an infrastructure for all of these scenarios.

Quite distinct profiles can be accommodated:
- Operator
- Space Weather Scientist
- Spacecraft manufacturer
- End-user of another domain
Other possibilities

- Requirements for end-user front-end application are simple to satisfy (e.g. www access to services)
- Real-time services are also feasible, depending on investments in hardware and software
Future work

- This proposal has not been selected for a full proposal by ESTEC, in the SW Pilot Project
- The ESA-Portugal Task Force has accepted to fund this project (pending on final negotiations)
- A prototype of the full architecture can be developed in 2003, the client will be ESOC at least
CA³

Contact

www.uninova.pt/ca3

Emails:
Alfredo Pereira (ap@uninova.pt)
Fernando Moura Pires (fmp@uninova.pt)
Luís Correia (lc@uninova.pt)
Rita Ribeiro (rar@uninova.pt)

Address: Centro de Robótica Inteligente UNINOVA
Quinta da Torre 2829-516 Caparica Portugal
Phone/fax: +351 212 949 625/+351 212 957 786