EGSO
Infrastructure for the Space Weather Community

R.D. Bentley and the EGSO Team

Presentation to Space Weather Workshop
16-18 December 2002, ESTEC

Outline

- Overview of EGSO
- The problems EGSO will solve
- Details of how EGSO will function
- Enhancements for Space Weather
EGSO - European Grid of Solar Observations

- EGSO is a Grid test-bed related to a particular application
 - Designed to improve access to solar data for the solar physics and other communities
 - Addresses the problem of a distributed heterogeneous data set and a scattered user community
- Funded under the Information Society Technologies (IST) thematic priority of the EC’s Fifth Framework Program (FP5)
 - Started March 2002; duration of 36 months
- Eleven groups in Europe and the US, led by UCL-MSSL
 - 4 in UK, 2 in France, 2 in Italy, 1 in Switzerland, 2 in US
 - Several associate partners, mainly in the US
 - EGSO, the US VSO & CoSEC working closely together
 - Successful joint meeting in October 2002 at MSSL
 - EGSO also collaborating with ESA’s study project SpaceGRID
- Currently working on details of the architecture and developing demonstration testbeds

The EGSO Team

- **UK**
 - UCL-MSSL, UCL-CS, RAL, Univ. Bradford, Astrium
- **France**
 - IAS (Orsay), Observatoire de Paris-Meudon
- **Italy**
 - Istituto Nazionale di Astrofisico, Politecnico di Torino
 - INAF includes observatories of Turin, Florence, Naples and Trieste
- **Switzerland**
 - Univ. Applied Sciences (Windisch)
- **US**
 - SDAC (NASA-GSFC), National Solar Observatory
The Extended Team

- **UK**
 - UCL-MSSL, UCL-CS, RAL, Univ. Bradford, Astrium
- **France**
 - IAS (Orsay), Observatoire de Paris-Meudon
- **Italy**
 - Istituto Nazionale di Astrofisico, Politecnico di Torino
 - INAF includes observatories of Turin, Florence, Naples and Trieste
- **Switzerland**
 - Univ. Applied Sciences (Windisch)
- **Netherlands**
 - ESA - Solar Group
- **US**
 - SDAC (NASA-GSFC), National Solar Observatory (VSO)
 - Stanford University, Montana State University (VSO)
 - Lockheed-Martin (CoSEC)

Nature of solar observations

- The appearance of the Sun changes dramatically with wavelength
- For a complete picture, need to use as wide a range of observations as possible
- Identifying what observations were made and then retrieving them is a major obstacle
Overview of the generic problem

- **Observations used to build up a picture of the plasma in multi-dimensional parameter space** (incl. x, y, z, t, T & ρ)
 - Users need access to as many wavelengths as possible
 - For technical and practical reasons:
 - UV, EUV, X-rays and γ-rays observed from space
 - Radio and optical wavelengths observed from the ground (coverage)
- **Data centres and observatories located around the world**
 - Increasing data volumes, etc. require new methodology
 - Large and small facilities (with varying resources)
 - Aim is to make it easy to add new data sets
- **Users scattered around the world**
 - Do not need to know where the data is located
 - Capabilities of users computing vary greatly
 - Authentication issue needs serious consideration
 - Want to minimize how this affects the user

Overview of generic application

- **Identify suitable observations** (many serendipitous)
 - Should be possible without accessing the data
 - Catalogues differ in quality, contents, and dependencies
- **Locate the data**
 - Data scattered, with differing means of access (some proprietary)
 - Often only need a subset of each data set
- **Process the data**
 - Involves extraction and calibration of a subset of data
 - Uses code defined by instrument teams (SolarSoft, C…)
- **Return results to the User**
- **Compare results from different instruments**
 - SolarSoft (IDL) provides a standard platform for analysis

Note: the interchange in the order of bullets 3 and 4 in the Grid solution when compared to current practice.
EGSO work packages

EGSO work package structure reflects the generic application

- **Catalogues (WP4 & WP5)**
 - Means of identifying what observations are available
 - Catalogue search and visualization tools (WP3)
 - User interface to search catalogues for suitable observations

- **Data retrieval and processing mechanisms (WP2)**
 - Locate best source of requested data
 - Select subset, process and return them

- **System Definition and Integration (WP1)**
 - Define overall requirements and constraints (user input)
 - Architectural Design; define integration and testing
 - Integration of the components of other WPs

- **Project Control and Dissemination (WP0)**

EGSO - Search Engine

- Enhanced “cataloguing” used to select observations
 - Metadata versions of observing catalogues tie together heterogeneous data sets - data itself left untouched
 - New types of catalogues allow searches on events, features and phenomena rather than just date & time, pointing, etc...

- Ancillary data (images, time series, etc.) provide additional search criteria
 - Also enhance capabilities of the (Graphic) User Interface

- Search Registry allows hierarchical optimization
 - Entries describe metadata/data available for search
 - Registry replicated to provide resilience and load sharing

- Alternate entry point (to User Interface) allows access by researchers from other communities or Grids
 - Astrophysics, Climate Physics, Space Weather...
The enhanced solar catalogues

- **Unified Observing Catalogues (UOC)**
 - Metadata form of catalogues needed to tie together the heterogeneous data, leaving original data unchanged
 - Self-describing (e.g., XML), quantised by time and instrument, with no dependencies on ancillary data or proprietary software and any errors corrected
 - Standard defined for future data sets (e.g., STEREO, iLWS, Solar-B)

- **Solar Event Catalogues (SEC)**
 - Built from information contained in published lists
 - Flare lists, CME lists, lists in SGD, etc.

- **Solar Feature Catalogue (SFC)**
 - Lists of the occurrence of events, phenomena and features provides an alternate means of selecting data
 - Derived using image recognition software

EGSO - Query Resolving

Nature of searches and User Interface will be derived from Use Cases

- **Search Query Resolver**
 - Search Registry
 - Search Info.
 - Requestor
 - Nature of interface to providers under review (Grid and/or P2P)

- **Data Requests**
 - Query Generator
 - (G)UI
 - Summary Images, etc.
EGSO - Handling the data

- **An objective is to dramatically enhance access to the data**
 - User only needs to know observations exist, not where located
 - System able to optimize use of sources (closest, least used...)
 - Addition of new sources made as simple as possible

- **Process as much data at source as possible**
 - Extraction and calibration of subset of data
 - Solar data are usually stored in raw form
 - Software for processing defined by instrument team (IDL, C...)
 - Processing reduces volumes of data moved around
 - Simplifies requirements on user's own system

- **Standard (pipe-line) processing adequate for many users**
- **More complex problems require ability to upload code**
 - Used in analysis of extended data sets (helioseismology, etc)
 - System allocates resources; Security an issue
 - Models and simulations have similar requirements

Resource Usage

- **Resources available to EGSO are described in the Resource Registry**
 - These include: data, processing, storage, service, ...
 - Some providers can support multiple capabilities
 - Entry for a data resource just identifies what data stored where, how they are accessed, etc.
 - Allows handling of replicated data and aggregated sources
 - Data resources described in more detail in the Data Registry

- **Resource Broker allocates and monitors resources needed to satisfy user requests**
 - Controls processing of data & staging of results
 - Control how much being requested of a particular provider
 - Processing may be at different site to data provider
 - Plans to support use of multi-instance processing and HPC
 - Broker & Registries replicated to provide system resilience and permit load sharing
Locating & Processing the Data

Search Engine/ Catalogue Warehouse

- Resource Registry
- Data Map Registry

Data Source

- Catalogue
- Locator Block
- Data Map

One of many sources

Exact nature of interface to providers under review (Grid and/or P2P)

Project Status

The EGSO project falls into four phases

I. Project definition; consult with the community; explore and experiment with technologies
II. Architectural design; system integration and validation plan
III. Implementation of design; development of middleware and catalogues
IV. Product commissioning and delivery

Note: There are no clean breaks between phases

Project currently in Phase II

- Detailed list of requirements gathered
 - Web survey of users and science cases from individuals
 - Used to define Technical Requirements
- Working on 1st iteration of EGSO Architecture
- Work packages drawing up detailed plans
Additional needs of Space Weather

- More integrated access to STP and other data
 - Types of data more important than specifics
 - Ensure that cataloging, etc. and registry compatible
- Immediacy of access to data
 - Most access to EGSO likely to be for older data
 - Near-casting needs data a few minutes old
 - e.g. CME passing L1 will hit magnetosphere 30-60 mins later
 - Generally only need modest amounts of data
 - Forecasting needs data a few hours old
 - e.g. CME starting from Sun will arrive 36-72 hours later
 - More complex data requirements
- Ability to run models using data or derived parameters as input

Compatibility of current design

- Aspects of design of EGSO already compatible
 - Interface to data provider interface designed to be as simple as possible
 - Want to be able to add as many sources as possible
 - Unified Observing Catalogues formed in fragments
 - only update the latest one; provider defines update frequency
 - Ancillary data - e.g. time series - already used by search engine
 - Stripped down Search Registry could focus on space weather providers
 - STP data could be thought of as ancillary data or SEC data
 - Uploading and execution of code will support models and simulations
- Need to ensure EGSO detailed design does not prohibit things required for Space Weather
Conclusions

- EGSO is providing enhanced access to solar data for the solar and related communities
- Much of this infrastructure could be adapted as the basis of a European space weather system
- EGSO has already established close links with counterparts in the US, and relevant projects including ILWS and STEREO
- Currently working on details of the architecture and developing demonstration testbeds

- For more information on EGSO see:
 - http://www.egso.org
 - Or e-mail
 - bentley@egso.org