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FUTURE WORKS

The main following step will be to check the efficiency of neurofuzzy modelling to predict foF2 during disturbed geomagnetic activity periods. It is well known by scientific community the natural capability that neurofuzzy systems show to model highly non-lineal systems 

and/or about uncertainty where other techniques do not work properly. Therefore, its application to predict foF2 under these geomagnetic conditions may be considered as promising for obtaining prediction accuracy acceptable from practical point of view.

The aim of this poster is to present the application of neurofuzzy techniques to ionosphere modelling. Specifically, these techniques have been  applied to model and predict the critical frequency of F2 layer, foF2. The method 
has been tested under quiet and moderately geomagnetic conditions using foF2 data from Slough ionosonde station, providing foF2 forecast (1-24 hours in advance) with relative mean deviation between  5-11%. 
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Figure 2.- Initial model used ∆foF2[t+n] =f(Ap, ∆foF2[t-2], ∆foF2[t-1], ∆foF2[t]). 

This model did not allow to capture the dynamic of the system appropiately.

Figure  3.- Final model: foF2[t+n] =f(Ap, ∆foF2[t-2], ∆foF2[t-1], 

∆foF2[t], e, ∆e).

Figure 1.- Relative mean deviation (in %) of      

1-hour lead time foF2 predictions

Figure 4.- Modelling Error vs number of learning 

epoch during the training time of the model

DATA AND METODOLOGY

Data and periods: In this study, hourly foF2 observations on Slough Station are used to propose a method for foF2 short-term (1-24 hours in advance) 

prediction. Special quiet and moderate geomagnetic activity time periods (Ap<30) have been analysed to test the method. Shown periods in this poster are 

listed on table 1.

Testing method: In order to test the foF2 neurofuzzy models, short-term predictions (1-24 hour lead times) are obtained

over these selected periods and compared with the real observations to calculate the relative mean deviation (RMD) (14),

where         and          are the hourly observed and predicted values respectively and  N is the number of analysed samples.

Length of training period: A 30-days time period has been selected to train the model. Dependence of RMD on the number of training days over quiet 

geomagnetic periods is shown on figure 1 as an example.

Input parameters: Relative foF2 deviations from running median over the training period, ∆foF2=( foF2- foF2med)/ foF2me d are considered. To predict 

the foF2 value with n hours in advance, ∆foF2[t+n],  the model takes into account the following inputs (see figures 2 and 3):

� Last three known hourly foF2 values: ∆foF2[t-2], ∆foF2[t-1], ∆foF2[t], where a current instant of time t is supposed.

� Ap: index used to include the dependence on magnetic activity.

� Error between the observed and estimated values,                     , and the velocity of the error between successive steps    .

Learning epochs: This number is determined from the medium square error MSE defined for each epoch in algorithm 1. As it can be observed from figure 

4, MSE decreases in an approximated exponential form with the number of epochs until the model goes in a saturation state. In order to avoid the model 

overfitting, the number of learning epoch has been selected to 50.
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foF2 PREDICTION ACCURACY UNDER NOT DISTURBED GEOMAGNETIC ACTIVITY PERIODS

� A quiet acceptable foF2 prediction accuracy with RMD around 5-6% is provided for 1-2 hour lead times. For larger lead times, the method provides prediction accuracy with RMD varying between 6-11%.

Figures 5 and 6: An example of foF2 prediction accuracy in dependence on the lead time for three quiet (left figure) and three 

moderately disturbed periods (right figure)
Figures 7 and 8.- An example of foF2 prediction (1 hour in advance) over a quiet (left figure) and a moderately disturbed period (right figure). Both 

observed and predicted foF2 variations are very close, which indicates the great efficiency of the neurofuzzy foF2 model under  these conditions.
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- ALGORITHM USED TO IMPLEMENT THE DESCENDING 
GRADIENT METHOD -

γ, β,y’,e = bp (η, m, n, γ, β, x, y, r, ε)
for each epoch

for each training point
y’(p) = Compute_Fx
e(p) = y(p)-y’(p)
γ = Update_Centres
β = Update_Widths
y’= Update_Consequents

endfor
error(epoch) = MSE (e)
if (error (epoch) < ε) Or (Stable(error(epoch)))

return (γ, β,y’,error)
endif
if (error (epoch) < error (epoch-1)

Inc(η,r)
endif
if (error (epoch) > error (epoch-1)

Dec(η,r)
endif
endfor
return (γ, β,y’,error)
end

where:
• “m”: number of rules.
• “n”: number of inputs.
• “γ”, “β”: centres and widths 
of the Gaussian membership 
functions.
• “MSE”: medium square 
error calculated from total 
number of errors e(p) in the 
training set.
• “η”: learning rate
• “x”: inputs
• “y”: output
• “ y’ ”: consequent
• “r”: tolerance margin
• “ε” : error limit.
• “Fx”: function implementing 
the consequent part  TSK 
with affine term

FUZZY  MODELS
- Mamdani models: in the case of a one input/one output system, their rules have the form:                                               (1)   where A,B-fuzzy sets.

- Takagi-Sugeno models (TS) (also called Takagi-Sugeno- Kang – TSK Models): their rules are expressed as (2), where f(x) is a linear or non-linear 
function.  

NEUROFUZZY MODELLING

� Let’s consider the system established by:                           (3) or in the abbreviated  form: (4). 

�An equal Fuzzy model to this system can be represented by the following set of  fuzzy rules (5), where l = 1...M is the number 

of rules of the fuzzy model, and  the Fuzzy set            is defined in the universe of discourse of the input variable xk, k=1,...n, and  y the i-th equation of the process (i = 1…m).

�If  the consequent term in  (5) is a TSK consequent with affine term, this can be written: (6), where           represents the constant coefficient 

for the state variable xk corresponding to the rule l of the i-th equation . Vector              represents the set of adaptive parameters   (7)

�Considering a TSK Fuzzy system with a product inference operator and centre average defuzzifier, expression (3) can be written as: (8), where         is 

the estimated output of the system and          is the firing degree (matching degree or fulfilment degree) of the rule l, that is: (9), where    are the 

characteristics parameters of the membership function           that define the fuzzy set       . If the functions given in (3) are replaced by the equation (8), the appropriate 

adjustment of all rules group parameters ,         and        , would permit that the final fuzzy system represents a model equivalent to the real system.

�In order to minimise the error between the output of the fuzzy system and the output of the system defined by the equation (3), it is possible to apply the descending gradient 

method to adjust the parameters of the fuzzy model. Considering a one output system, an error function in the p-th iteration can be defined as: (10), where  

y represents the output of the system that we want to model,     is the output of the fuzzy model to obtain, and p=1…N, N denoting the total number of input/output pairs in the 

training set. The descending gradient method minimises the cost function J adjusting the parameters           and       , with a value proportional to the derivate of the function respect 

to every parameter: (11) and (12).
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�The adaptation of the learning rate parameter is made in the functions 

“Inc(η,r)” and  “Dec(η,r)” according to the expression:

(13)

�The described method to adjust the parameters and the algorithm that 

implements it, are based on one of the more important neural networks learning 

algorithms: Backpropagation (BP), so this modelling  technique is named 

neurofuzzy.
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