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Solar energetic particle events

I Solar Energetic Particle (SEP) events related to

I X-ray flares
I Coronal Mass Ejections (CMEs)

I SEP event categories

I impulsive events

I related to impulsive flares (“flare-acceleration”)
I enriched in electrons, 3He and heavy ions
I duration from hours to days; “low” intensities

I gradual events

I related to gradual flares and CMEs (“shock-acceleration”)
I typically “normal abundances”
I duration from days to a week; “high” intensities

I hybrid events

I flare- and shock-acceleration observed simultaneously, and/or
I shock-acceleration of supra-thermals remnant from prior

impulsive flares
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SEP events vs. source longitude
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SEP acceleration processes

I Coronal sources (rs ∼ R�)

I flares (reconnection E -fields, stochastic acceleration)
I coronal shock waves (shock acceleration)

I Interplanetary sources (rs � R�)

I interplanetary shock waves

I Modeled either physically or phenomenologically
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SEP transport processes in IP space

I Gyrating around and streaming
along the IMF field lines

I E ×B drift ⇒ co-rotation

I Adiabatic focusing (mirroring)

I Scattering off magnetic
irregularities →

I diffusion in pitch angle
I spatial diffusion

I Convection with the scattering
centers

I Adiabatic deceleration

v

∆

B−
v || v’||

B

conserves
scattering

v’

focusing
conserves v
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Test-particle models

I IP transport models

I IP-shock acceleration models
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Diffusion–convection models – Parker’s equation

Particle transport under strong scattering (Parker 1965)

∂f
∂t

= −V · ∇f convection

+
p
3
(∇ ·V )

∂f
∂p

adiabatic deceleration

+∇ · (κ · ∇f ) spatial diffusion

(PE)

f omnidirectional distribution function

V solar wind speed

κ spatial diffusion tensor, κij = κ
(s)
ij + κ

(a)
ij

I symmetric part: κ
(s)
ij = κ⊥δij + (κ‖ − κ⊥)bibj , bi = Bi/B .

I antisymmetric part (drifts): κ
(a)
ij = 1

3
rLv εijkbk .

Notes: (PE) assumes
I quasi-isotropic particle distributions, λ‖ ≡ 3κ‖/v � r
I frozen-in fluctuating fields

I convection velocity neglects wave transport
I stochastic acceleration neglected
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Diffusive SEP transport

(PE) can be further simplified for
> 10-MeV solar protons:

I drifts, adiabatic deceleration
and convection neglected

I if κ⊥ = 0 assumed

⇒ diffusion along field lines:

κ = κ‖bb

λrr = 0.1 AU

⇒ radial diffusion model, κrr = κ‖ cos2 ψ = 1
3λrrv

∴
∂np

∂t
=

1
r2

∂

∂r

(
r2κrr

∂np

∂r

)
; np ≡

d4N
d3r dp

= 4πp2f = 4πI

⇒ Green’s function (e.g. Wibberenz et al. 1989)

np(r , t) =
n0

r3

(
r2

a2κrr t

) 3
a

exp
{
− r2

a2κrr t

}
, n0(p) =

a
Γ( 3

a )
dN
dp

∣∣∣∣
s

for λrr ∝ rb with a = 2− b and b < 2.
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Scaling laws from diffusive transport

Typically, best fit for SEP data given by b ∈ [−0.5, 0.5] ⇒
Green’s function

np(r , t) =
n0(p)
r3

(
r2

(2− b)2κrr t

) 3
2−b

exp
{
− r2

(2− b)2κrr t

}
.

⇒ Scaling laws for short SEP injections from
the Sun (impulsive events and gradual
events with φ & 60◦W):

ns(p) ∝ I (r⊗,E , tmax)

I (r , tmax) ∝ r−3

Fp(r) =
∫∞
0

I dt ∝ ns(p)
rκrr (r ,p) ∝ r−b−1

⇒ r−2-scaling not applicable to intensity or fluence
⇒ fluence spectrum not proportional to source spectrum
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Focused transport equation

Weak scattering (λrr & 0.2 r) ⇒ anisotropic f ⇒ (Roelof 1969)

∂f
∂t

= −vµ
∂f
∂s

streaming

−(1− µ2)
v
2L

∂f
∂µ

focusing

+
∂

∂µ

(
Dµµ

∂f
∂µ

)
pitch-angle diffusion

(FT)

f (gyro-tropic) distribution function

s particle position along the field line (co-rotating frame)

v , µ particle speed and pitch-angle cosine (co-rotating frame)

L focusing length, L−1 = − 1
B

∂B
∂s .

Dµµ pitch-angle diffusion coefficient

Note: v only a parameter so the phase space is 2D: (z , µ)
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Focused transport equation – solar wind effects

If V 6= 0 is taken into account (Ruffolo 1995)

∂f
∂t

= −(vµ+ V )
∂f
∂s

streaming & convect.

−
(

v + µV
2L

)
(1− µ2)

∂f
∂µ

focusing

+
(

1− µ2

2L
V +

dV
ds

µ2

)
p
∂f
∂p

adiab. deceleration

+
∂

∂µ

(
Dµµ

∂f
∂µ

)
pitch-angle diffusion

(FT)

f (gyro-tropic) distribution function

s particle position along the field line (co-rotating frame)

p, v , µ particle momentum, speed and pitch-angle cosine (wind frame)

L focusing length, L−1 = − 1
B

∂B
∂s .

V solar wind speed (co-rotating frame)

Dµµ pitch-angle diffusion coefficient
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Which focused transport equation should we use?

I Ruffolo (1995) and Kocharov et
al. (1998) investigated the
solar-wind effects in (FT)

I Effects pronounced at low
(E ∼ 2 MeV) energies, where

I C speeds up transport early in
the event

I AD and C harden the spectrum
late in the event

I Effects less pronounced closer
to the Sun

Ruffolo (1995)

I At E & 10 MeV, we may neglect C and AD effects rather safely
for SpW purposes.
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Numerical methods to solve FTE

I Monte-Carlo simulations (e.g., Kocharov et al., Vainio et al.)

I trace individual particles in heliospheric fields
I scatter (via random generator) elastically in the frame of the

scattering center (wind frame)
I advantages and disadvantages

↑ easily implemented and tested
↓ rather slowly running codes

I Finite difference schemes (e.g., Ng et al., Ruffolo, Heras et al.,
Hatzky et al.)

I solve FTE directly on a grid
I advantages and disadvantages

↓ more cumbersome numerical methods needed
↑ faster codes (than MC)
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Elements of SEP event modeling

rs

Fits data?

λ, VL,τ, γ, 

SEP event
Modeled

NO

YES

Choose input values

model
Transport

model
acceler.
Injection/

SEP observations of

I omnidirectional intensity

I (E , r , t) ≡ p2

4π

∫
f (p, r , t) dΩ

I anisotropy

ξ(E , r , t) ≡
3

∫
µ f (p, r , t) dΩ∫
f (p, r , t) dΩ

compared with modeled SEP event.

⇒ Understanding of SEP sources and transport conditions.
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Modeling SEP sources

I Focused transport equation + SEP injection/acceleration

I Possible approaches:

I include source term (phenomenological),

∂f

∂t
+ vµ

∂f

∂s
+ (1− µ2)

v

2L

∂f

∂µ
=

∂

∂µ

„
Dµµ

∂f

∂µ

«
+ Q(s, p, µ, t)

I use (inner) boundary condition (phenomenological or physical),

f (s0(t), p, µ, t)µ>0 = S0(p, µ, t) + F{f (t)µ<0}

I include a shock in the solar wind speed (physical)

∂f

∂t
= −(vµ + V )

∂f

∂s
−
„

v + µV

2L

«
(1− µ2)

∂f

∂µ
+

∂

∂µ

„
Dµµ

∂f

∂µ

«
+

 
1− µ2

2L
V +

dV

ds
µ2

!
p

∂f

∂p
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Phenomenological source modeling

Example: Heras et al. (1992)

I Sources: corona & IP
shock

I Injection profiles: R + Q
I IP transport: λ‖ and q
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Phenomenological source modeling – key results

I CME-driven shocks are efficient particle accelerators up to
hundreds of MeVs (e.g., Torsti et al. 1996, Anttila et al. 1998)

I Spectra ∝ E−γe−E/E0 ↑↑ shock acceleration

I The nose region of the shock most efficient in accelerating
particles (e.g., Anttila et al. 1998)

I Injection rate Q at the shock increases with shock velocity ratio
(e.g., Lario et al. 1997)

I Magnetic connection of the S/C to the shock essential (e.g.,
Heras et al. 1992)

I Typical values of the interplanetary scattering m.f.p.

λ‖ ∼ 0.1− 1 AU, λrr = λ‖ cos2 ψ ∝ rb , b ∼ 0

I Useful approach for creating synthetic SEP events (Space
Weather)

I Engineering model SOLPENCO (Aran et al. 2004)
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Physical approach – particle acceleration at shocks

I Diffusive shock acceleration (steady state, shock frame):

V
∂f
∂x

− p
3
∂V
∂x

∂f
∂p

=
∂f
∂x

(
κ
∂f
∂x

)
+ Q0δ(x )δ(p − p0) (1D-PE)

⇒ f =

{
f2 exp{

∫ x

0
V1dx ′/κ(x ′)}, x < 0

f2 x > 0

f2(p) =
Q0σ

V1

(
p
p0

)−σ

, σ =
3V1

V1 −V2

V1

shock

upstream downstream

V2

observer Sun

x

⇒ Transport equations contain the
necessary terms to model IP
particle acceleration!

I Why don’t we use them?
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Diffusive shock acceleration – role of turbulence

I DSA

f =

{
f2e

R x
0 V1dx

′/κ(x ′), x < 0
f2 x > 0

f2(p) =
Q0σ

V1

(
p
p0

)−σ

, σ =
3V1

V1 −V2

I Key parameter: particle acceleration
rate

ṗ
p
∼ V 2

sh

κ
∼ V 2

sh

λv
>

Vsh

r

⇒ λ < r
Vsh

v
↑↓ λobs

⇒ Self-generated waves (Bell 1978)
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Self-consistent models

I Generation of waves by SEPs

I Self-consistent models of SEP acceleration at IP Shocks
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Wave–particle interactions

I Particles scattered by MHD (Alfvén)
waves with

ω = ±VAk

I Cyclotron resonance (and a useful
approximation)

k =
ωc

vµ±VA
' ωc

v ′

VA

v⊥

fk

v ||

v ||

v’

I Particle scattering leads to isotropy in wave frame
I particle energy density in plasma frame increases/decreases
⇒ wave intensity I (k) decreases/increases

I Scattering rate and Wave-growth rate

Dµµ '
π

2
ωci(1− µ2)

[k I (k)]k=mωc/p

B2
; λ =

3v
8

∫ +1

−1

(1− µ2)2

Dµµ
dµ

γ(k) ' π

2
ωci

[p3S (p)]p=mωc/k

VAne
; S =

∫
vµ f dΩ
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Streaming-limited intensities

I Observationally (Reames
& Ng 1998)

Ip .
5 · 102

cm2 sr s MeV

at MeV energies before
shock arrival

I Can be understood by coronal trapping in self-generated
turbulence (Ng & Reames 1994; Vainio 2003)

I Model predicts the time-evolution of abundance ratios of
high-to-low rigidity ions as well (Ng et al. 1999)



Modeling of SEPs
in IP space

Rami Vainio

Introduction

Solar energetic particle
events

SEP acceleration and
transport

Test-particle
models

Particle transport
equations

Modeling SEP events

Particle acceleration at
shocks

Self-consistent
models

Generation of waves by
SEPs

Ion acceleration at IP
shocks

Conclusions

Ion acceleration at IP shocks

I Problem with Bell’s (1D) theory: no particle escape upstream

I Possible cures:

I focusing
I time dependence

I Rice et al., Zank et al., Li et al.

I Bell’s analytical model in a small region around the shock
I ad-hoc free escape boundary upstream
I diffusive transport downstream and focused transport upstream
I Quasi-steady state model

I Lee (2005)

I Uses f− =
R 0

−1
f dµ and f+ =

R +1

0
f dµ instead of

R +1

−1
f dµ

⇒ self-consistent wave-generation and escape by focusing
I Quasi-steady state model

I Vainio & Laitinen (in preparation)

I fully time dependent MC simulations (xpdf/acroread)
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Conclusions

I SEP transport in the interplanetary space in principle well
understood

I test-particle modeling
I self-generated waves

I Numerical methods to solve the transport equations

I Finite difference solutions
I Monte Carlo simulations

I Ad-hoc source modeling has yielded empirical information of

I interplanetary transport conditions
I interplanetary shock acceleration

I Physical modeling of interplanetary acceleration has experienced
several breakthroughs over the last few years

I role of focusing in particle escape
I importance of full time dependence in self-consistent modeling
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