

Modeling of SEPs in IP space

Rami Vainio

Introduction

Solar energetic partic events

SEP acceleration and transport

Test-particl

Particle transpor

Modeling SEP events

Particle acceleration

Self-consistent

Concretion of wave

Ion acceleration at

Conclusions

Modeling of solar energetic particles in interplanetary space

Rami Vainio

Department of Physical Sciences, University of Helsinki

2nd ESWW / ESTEC 15 November 2005

Outline

Modeling of SEPs in IP space

Rami Vainio

Solar energetic parti

SEP acceleration an

T--t---ti-l-

models

Particle transport equations

Modeling SEP events Particle acceleration a

shocks

models

Ion acceleration at II

Conclusion

Introduction

Solar energetic particle events SEP acceleration and transport

Test-particle models

Particle transport equations Modeling SEP events Particle acceleration at shocks

Self-consistent models

Generation of waves by SEPs Ion acceleration at IP shocks

Conclusions

Solar energetic particle events

Modeling of SEPs in IP space

Rami Vainio

troduction

Solar energetic particle events

SEP acceleration an transport

Test-particl

Particle transpo

Madalian CED --

Particle acceleration

Self-consisten

Generation of waves

Ion acceleration at shocks

Conclusion

Solar Energetic Particle (SEP) events related to

- X-ray flares
- Coronal Mass Ejections (CMEs)
- SEP event categories
 - impulsive events
 - related to impulsive flares ("flare-acceleration")
 - enriched in electrons, ³He and heavy ions
 - duration from hours to days; "low" intensities
 - gradual events
 - related to gradual flares and CMEs ("shock-acceleration")
 - typically "normal abundances"
 - duration from days to a week; "high" intensities
 - hybrid events
 - ▶ flare- and shock-acceleration observed simultaneously, and/or
 - shock-acceleration of supra-thermals remnant from prior impulsive flares

SEP events vs. source longitude

Modeling of SEPs in IP space

Rami Vainio

ntroduction

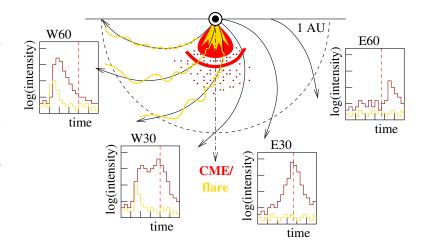
Solar energetic particle events

SEP acceleration and

st-particl

Particle transpo

Modeling SEP events


Particle acceleration shocks

Self-consister

Generation of waves b SEPs

Ion acceleration at IP shocks

.

SEP acceleration processes

Modeling of SEPs in IP space

Rami Vainio

Introduction

Solar energetic part events

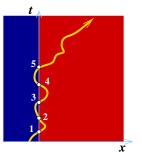
SEP acceleration and transport

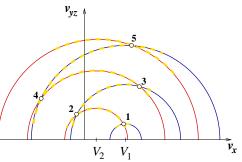
nodels

Particle transpo

equations
Modeling SEP events

Particle acceleration


Self-consisten


Generation of waves SEPs

Ion acceleration at IP shocks

Conclusions

- ▶ Coronal sources $(r_{\rm s} \sim R_{\odot})$
 - ▶ flares (reconnection *E*-fields, stochastic acceleration)
 - coronal shock waves (shock acceleration)
- ▶ Interplanetary sources $(r_{
 m s} \gg R_{\odot})$
 - interplanetary shock waves
- Modeled either physically or phenomenologically

SEP transport processes in IP space

Modeling of SEPs in IP space

Rami Vainio

. . .

Solar energetic parti

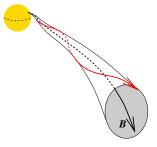
SEP acceleration and transport

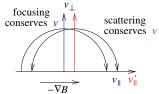
Test-particl

Particle transport

Modeling SEP events
Particle acceleration a

Self-consistent


models


Generation of way

Ion acceleration at II shocks

Conclusion

- Gyrating around and streaming along the IMF field lines
- ightharpoonup E imes B drift \Rightarrow co-rotation
- Adiabatic focusing (mirroring)
- Scattering off magnetic irregularities →
 - diffusion in pitch angle
 - spatial diffusion
- Convection with the scattering centers
- Adiabatic deceleration

Test-particle models

Modeling of SEPs in IP space

Rami Vainio

Introductio

Solar energetic partic events

SEP acceleration and transport

Test-particle models

Particle transpor

Modeling SEP events

Particle acceleration shocks

Self-consistent

Generation of waves by SEPs

Ion acceleration at IP shocks

Conclusions

▶ IP transport models

▶ IP-shock acceleration models

Diffusion-convection models - Parker's equation

Modeling of SEPs in IP space

Rami Vainio

stroductio

Solar energetic part events

transport

Test-particle

Particle transport

equations Modeling SEP events

Particle acceleration

shocks

models

Generation of ways

Ion acceleration at IP shocks

Conclusion

Particle transport under strong scattering (Parker 1965)

$$\begin{array}{ll} \frac{\partial f}{\partial t} & = & - \textbf{\textit{V}} \cdot \nabla f & \text{convection} \\ & & + \frac{p}{3} (\nabla \cdot \textbf{\textit{V}}) \frac{\partial f}{\partial p} & \text{adiabatic deceleration} \\ & & + \nabla \cdot (\textbf{\textit{\kappa}} \cdot \nabla f) & \text{spatial diffusion} \end{array} \tag{PE}$$

- f omnidirectional distribution function
- $oldsymbol{V}$ solar wind speed
- κ spatial diffusion tensor, $\kappa_{ij} = \kappa_{ij}^{(s)} + \kappa_{ij}^{(a)}$
 - symmetric part: $\kappa_{ij}^{(\mathrm{s})} = \kappa_{\perp} \delta_{ij} + (\kappa_{\parallel} \kappa_{\perp}) b_i b_j$, $b_i = B_i/B$.
 - antisymmetric part (drifts): $\kappa_{ij}^{(\mathbf{a})} = \frac{1}{3} r_{\mathbf{L}} v \, \epsilon_{ijk} b_k$.

Notes: (PE) assumes

- quasi-isotropic particle distributions, $\lambda_{\parallel} \equiv 3\kappa_{\parallel}/v \ll r$
- frozen-in fluctuating fields
 - convection velocity neglects wave transport
 - stochastic acceleration neglected

Diffusive SEP transport

Modeling of SEPs in IP space

Rami Vainio

troduction

Solar energetic part events

transport

models

Particle transport equations

Modeling SEP events

Particle acceleration shocks

Self-consisten models

Generation of waves SEPs

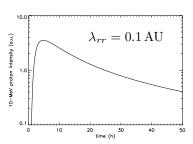
Ion acceleration at I shocks

Conclusions

(PE) can be further simplified for > 10-MeV solar protons:

- drifts, adiabatic deceleration and convection neglected
- if $\kappa_{\perp} = 0$ assumed
 - ⇒ diffusion along field lines:

$$\kappa = \kappa_{\parallel} b b$$


 \Rightarrow radial diffusion model, $\kappa_{rr} = \kappa_{\parallel} \cos^2 \psi = \frac{1}{3} \lambda_{rr} v$

$$\therefore \frac{\partial n_p}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \kappa_{rr} \frac{\partial n_p}{\partial r} \right); \quad n_p \equiv \frac{d^4 N}{d^3 r \, dp} = 4\pi p^2 f = 4\pi I$$

⇒ **Green's function** (e.g. *Wibberenz et al.* 1989)

$$n_p(r,t) = \frac{n_0}{r^3} \left(\frac{r^2}{a^2 \kappa_{rr} t} \right)^{\frac{3}{a}} \exp\left\{ -\frac{r^2}{a^2 \kappa_{rr} t} \right\}, \ n_0(p) = \frac{a}{\Gamma(\frac{3}{a})} \frac{dN}{dp} \Big|_{s}$$

for
$$\lambda_{rr} \propto r^b$$
 with $a = 2 - b$ and $b < 2$.

Scaling laws from diffusive transport

Modeling of SEPs in IP space

Rami Vainio

Introduction

Solar energetic par events

> SEP acceleration an ransport

Test-particl models

Particle transport equations

Modeling SEP events

shocks

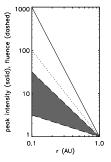
Self-consiste models

SEPs SEPs

Ion acceleration at shocks

Conclusion

Typically, best fit for SEP data given by $b \in [-0.5, 0.5] \Rightarrow$ Green's function


$$n_p(r,t) = \frac{n_0(p)}{r^3} \left(\frac{r^2}{(2-b)^2 \kappa_{rr} t} \right)^{\frac{3}{2-b}} \exp\left\{ -\frac{r^2}{(2-b)^2 \kappa_{rr} t} \right\}.$$

 \Rightarrow Scaling laws for short SEP injections from the Sun (impulsive events and gradual events with $\phi \gtrsim 60^{\circ} \mathrm{W}$):

$$n_{\rm s}(p) \propto I(r_{\otimes}, E, t_{\rm max})$$

$$I(r, t_{\rm max}) \propto r^{-3}$$

$$\mathcal{F}_p(r) = \int_0^{\infty} I \, dt \propto \frac{n_{\rm s}(p)}{r \kappa_{rr}(r, p)} \propto r^{-b-1}$$

- $\Rightarrow r^{-2}$ -scaling **not applicable** to intensity or fluence
- ⇒ fluence spectrum not proportional to source spectrum

Focused transport equation

Modeling of SEPs in IP space

Rami Vainio

Solar operation

Solar energetic parti events

transport

models

Particle transport

equations Modeling SEP events

Particle acceleration a

Self-consisten

models

Ion acceleration at IP

Conclusion

Weak scattering $(\lambda_{rr} \gtrsim 0.2 r) \Rightarrow \text{anisotropic } f \Rightarrow (\textit{Roelof 1969})$

$$\begin{split} \frac{\partial f}{\partial t} &= -v\mu \frac{\partial f}{\partial s} & \text{streaming} \\ &- (1-\mu^2) \frac{v}{2L} \frac{\partial f}{\partial \mu} & \text{focusing} \\ &+ \frac{\partial}{\partial \mu} \left(D_{\mu\mu} \frac{\partial f}{\partial \mu} \right) & \text{pitch-angle diffusion} \end{split} \tag{FT}$$

- f (gyro-tropic) distribution function
- s particle position along the field line (co-rotating frame)
- v,μ particle speed and pitch-angle cosine (co-rotating frame)
 - L focusing length, $L^{-1} = -\frac{1}{B} \frac{\partial B}{\partial s}$.
- $D_{\mu\mu}$ pitch-angle diffusion coefficient

Note: v only a parameter so the phase space is 2D: (z, μ)

Focused transport equation – solar wind effects

Modeling of SEPs in IP space

Rami Vainio

Introductio

events SEP acceleration a

transport

Test-particle models

Particle transport equations

Modeling SEP events

Particle acceleration shocks

Self-consiste models

Generation of waves SEPs

Ion acceleration at IP shocks

Conclusions

If $V \neq 0$ is taken into account (*Ruffolo* 1995)

$$\begin{split} \frac{\partial f}{\partial t} &= -(v\mu + V)\frac{\partial f}{\partial s} & \text{streaming \& convect.} \\ &- \left(\frac{v + \mu V}{2L}\right)(1 - \mu^2)\frac{\partial f}{\partial \mu} & \text{focusing} \\ &+ \left(\frac{1 - \mu^2}{2L}V + \frac{dV}{ds}\mu^2\right)p\frac{\partial f}{\partial p} & \text{adiab. deceleration} \\ &+ \frac{\partial}{\partial \mu}\left(D_{\mu\mu}\frac{\partial f}{\partial \mu}\right) & \text{pitch-angle diffusion} \end{split}$$

- f (gyro-tropic) distribution function
- s particle position along the field line (co-rotating frame)
- p,v,μ particle momentum, speed and pitch-angle cosine (wind frame)
 - L focusing length, $L^{-1} = -\frac{1}{B} \frac{\partial B}{\partial x}$.
 - V solar wind speed (co-rotating frame)
 - $D_{\mu\mu}$ pitch-angle diffusion coefficient

Which focused transport equation should we use?

Modeling of SEPs in IP space

Rami Vainio

Introduction

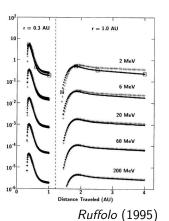
Solar energetic parti events

transport

models

Particle transport equations

Modeling SEP events


Particle acceleration a
shocks

Self-consiste

Generation of waves I SEPs

shocks

- ➤ Ruffolo (1995) and Kocharov et al. (1998) investigated the solar-wind effects in (FT)
- ▶ Effects pronounced at low $(E \sim 2~{
 m MeV})$ energies, where
 - C speeds up transport early in the event
 - ► AD and C harden the spectrum late in the event
 - Effects less pronounced closer to the Sun

 \blacktriangleright At $E\gtrsim 10$ MeV, we may neglect C and AD effects rather safely for SpW purposes.

Numerical methods to solve FTE

Modeling of SEPs in IP space

Rami Vainio

E-I-----

events

transport

models

Particle transport

equations Modeling SEP events

Particle acceleration shocks

models

Generation of waves SEPs

Ion acceleration at I shocks

Conclusion:

▶ Monte-Carlo simulations (e.g., Kocharov et al., Vainio et al.)

- trace individual particles in heliospheric fields
- scatter (via random generator) elastically in the frame of the scattering center (wind frame)
- advantages and disadvantages
 - easily implemented and tested
 - rather slowly running codes
- ► Finite difference schemes (e.g., Ng et al., Ruffolo, Heras et al., Hatzky et al.)
 - solve FTE directly on a grid
 - advantages and disadvantages
 - more cumbersome numerical methods needed
 - ↑ faster codes (than MC)

Elements of SEP event modeling

Modeling of SEPs in IP space

Rami Vainio

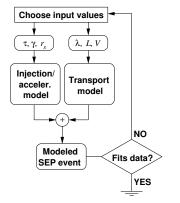
ntroductio

Solar energetic parti events

transport

models

Particle transpo


Modeling SEP events

shocks

Self-consisten models

SEPs SEPs

Conclusion

SEP observations of

omnidirectional intensity

$$I(E, \boldsymbol{r}, t) \equiv rac{p^2}{4\pi} \int f(\boldsymbol{p}, \boldsymbol{r}, t) \ d\Omega$$

anisotropy

$$\xi(E, \mathbf{r}, t) \equiv \frac{3 \int \mu f(\mathbf{p}, \mathbf{r}, t) d\Omega}{\int f(\mathbf{p}, \mathbf{r}, t) d\Omega}$$

compared with modeled SEP event.

⇒ Understanding of SEP sources and transport conditions.

Modeling SEP sources

Modeling of SEPs in IP space

Rami Vainio

Introductio

Solar energetic partic

EP acceleration an ransport

Test-partic

Particle transpo

Modeling SEP events

Particle acceleration a shocks

Self-consisten

Generation of waves I SEPs

Ion acceleration at IP shocks

Conclusion:

- ► Focused transport equation + SEP injection/acceleration
- Possible approaches:
 - include source term (phenomenological),

$$\frac{\partial f}{\partial t} + v\mu \frac{\partial f}{\partial s} + (1 - \mu^2) \frac{v}{2L} \frac{\partial f}{\partial \mu} = \frac{\partial}{\partial \mu} \left(D_{\mu\mu} \frac{\partial f}{\partial \mu} \right) + \boxed{Q(s, p, \mu, t)}$$

use (inner) boundary condition (phenomenological or physical),

$$f(s_0(t), p, \mu, t)_{\mu > 0} = S_0(p, \mu, t) + F\{f(t)_{\mu < 0}\}$$

include a shock in the solar wind speed (physical)

$$\begin{split} \frac{\partial f}{\partial t} &= -(v\mu + V)\frac{\partial f}{\partial s} - \left(\frac{v + \mu V}{2L}\right)(1 - \mu^2)\frac{\partial f}{\partial \mu} + \frac{\partial}{\partial \mu}\left(D_{\mu\mu}\frac{\partial f}{\partial \mu}\right) \\ &+ \left(\frac{1 - \mu^2}{2L}V + \boxed{\frac{dV}{ds}\mu^2}\right)p\frac{\partial f}{\partial p} \end{split}$$

Phenomenological source modeling

Modeling of SEPs in IP space

Rami Vainio

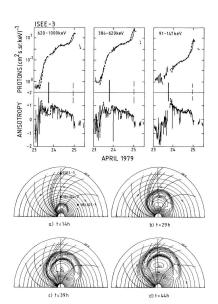
Solar energetic parti

EP acceleration an ransport

l est-partic

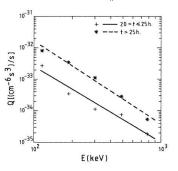
Particle transpo

Modeling SEP events


shocks

Self-consiste models

Generation of waves SEPs


Ion acceleration at I shocks

Conclusions

Example: Heras et al. (1992)

- Sources: corona & IP shock
- ▶ Injection profiles: R + Q
- ▶ IP transport: λ_{\parallel} and q

Phenomenological source modeling - key results

Modeling of SEPs in IP space

Rami Vainio

Solar operation

SEP acceleration an transport

Test-partic

Particle transpo

equations
Modeling SEP events

Particle acceleration at

Self-consistent

Generation of waves SEPs

Ion acceleration at IP shocks

Conclusion

► CME-driven shocks are efficient particle accelerators up to hundreds of MeVs (e.g., *Torsti et al.* 1996, *Anttila et al.* 1998)

- ▶ Spectra $\propto E^{-\gamma}e^{-E/E_0}\uparrow\uparrow$ shock acceleration
- ► The nose region of the shock most efficient in accelerating particles (e.g., *Anttila et al.* 1998)
- ▶ Injection rate Q at the shock increases with shock velocity ratio (e.g., Lario et al. 1997)
- ► Magnetic connection of the S/C to the shock essential (e.g., Heras et al. 1992)
- ▶ Typical values of the interplanetary scattering m.f.p.

$$\lambda_{\parallel} \sim 0.1 - 1 \text{ AU}, \quad \lambda_{rr} = \lambda_{\parallel} \cos^2 \psi \propto r^b, \ b \sim 0$$

- Useful approach for creating synthetic SEP events (Space Weather)
 - ► Engineering model SOLPENCO (Aran et al. 2004)

Physical approach – particle acceleration at shocks

Modeling of SEPs in IP space

Rami Vainio

Introduction

Solar energetic parti

SEP acceleration transport

Test-particle

Particle transpo

equations

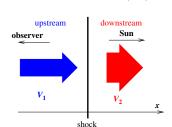
Modeling SEP events

Particle acceleration at shocks

Self-consistent

Generation of waves SEPs

Ion acceleration at IF shocks


Conclusion

▶ Diffusive shock acceleration (steady state, shock frame):

$$V\frac{\partial f}{\partial x} - \frac{p}{3}\frac{\partial V}{\partial x}\frac{\partial f}{\partial p} = \frac{\partial f}{\partial x}\left(\kappa\frac{\partial f}{\partial x}\right) + Q_0\delta(x)\delta(p - p_0) \quad \text{(1D-PE)}$$

$$\Rightarrow f = \begin{cases} f_2 \exp\{\int_0^x V_1 dx'/\kappa(x')\}, & x < 0 \\ f_2 & x > 0 \end{cases}$$

$$f_2(p) = \frac{Q_0\sigma}{V_1}\left(\frac{p}{p_0}\right)^{-\sigma}, \quad \sigma = \frac{3V_1}{V_1 - V_2}$$

- ⇒ Transport equations contain the necessary terms to model IP particle acceleration!
- ▶ Why don't we use them?

Diffusive shock acceleration - role of turbulence

Modeling of SEPs in IP space

Rami Vainio

Introduction

Solar energetic partie events

SEP acceleration a transport

Test-partic

Particle transpo

Modeling SEP events

Particle acceleration at shocks

Self-consisten

Generation of waves

lon acceleration at shocks

Conclusions

DSA

$$f = \begin{cases} f_2 e^{\int_0^x V_1 dx' / \kappa(x')}, & x < 0 \\ f_2 & x > 0 \end{cases}$$
$$f_2(p) = \frac{Q_0 \sigma}{V_1} \left(\frac{p}{p_0}\right)^{-\sigma}, \quad \sigma = \frac{3V_1}{V_1 - V_2}$$

► <u>Key parameter</u>: particle acceleration rate

$$\frac{\dot{p}}{p} \sim \frac{V_{\rm sh}^2}{\kappa} \sim \frac{V_{\rm sh}^2}{\lambda v} > \frac{V_{\rm sh}}{r}$$

$$\lambda < r \frac{V_{\rm sh}}{v} \quad \uparrow \downarrow \lambda_{\rm obs}$$

⇒ Self-generated waves (Bell 1978)

Self-consistent models

Modeling of SEPs in IP space

Rami Vainio

Introductio

Solar energetic partic events

SEP acceleration and transport

Test-particle

Particle transpor

Modeling SEP events

Particle acceleration a shocks

Self-consistent models

Generation of waves b

Ion acceleration at IP

Conclusion

- Generation of waves by SEPs
- ▶ Self-consistent models of SEP acceleration at IP Shocks

Wave-particle interactions

Modeling of SEPs in IP space

Rami Vainio

Introduction

Solar energetic partic events

SEP acceleration a transport

est-particl

Particle transpor

equations
Modeling SEP events

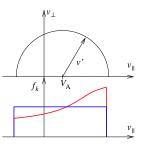
Daniela annelantian

Particle acceleration shocks

Self-consisten models

Generation of waves by SEPs

Ion acceleration at II shocks


Conclusions

 Particles scattered by MHD (Alfvén) waves with

$$\omega = \pm V_{\rm A} k$$

 Cyclotron resonance (and a useful approximation)

$$k = \frac{\omega_{\mathrm{c}}}{v\mu \pm V_{\mathrm{A}}} \simeq \frac{\omega_{\mathrm{c}}}{v'}$$

- ▶ Particle scattering leads to isotropy in wave frame
 - ▶ particle energy density in plasma frame increases/decreases
 - \Rightarrow wave intensity I(k) decreases/increases
- Scattering rate and Wave-growth rate

$$D_{\mu\mu} \simeq \frac{\pi}{2} \omega_{\rm ci} (1 - \mu^2) \frac{[k \, I(k)]_{k=m\omega_c/p}}{B^2}; \; \lambda = \frac{3v}{8} \int_{-1}^{+1} \frac{(1 - \mu^2)^2}{D_{\mu\mu}} d\mu$$

$$\gamma(k) \simeq \frac{\pi}{2} \omega_{\rm ci} \frac{[p^3 S(p)]_{p=m\omega_{\rm c}/k}}{V_{\Lambda} n_{\rm c}}; \ S = \int v \mu f \ d\Omega$$

Streaming-limited intensities

Modeling of SEPs in IP space

Rami Vainio

Solar energetic part

SEP acceleration a transport

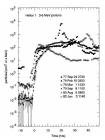
Test-partic models

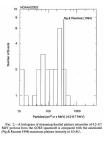
Particle transpo equations

Modeling SEP events Particle acceleration a

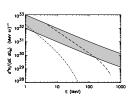
Self-consistent

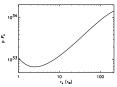
Generation of waves by

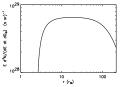

Ion acceleration at II shocks


C---I....

Observationally (Reames & Ng 1998)


$$I_p \lesssim \frac{5 \cdot 10^2}{\mathrm{cm}^2 \mathrm{\ sr\ s\ MeV}}$$


at MeV energies before shock arrival



- ► Can be understood by coronal trapping in self-generated turbulence (*Ng & Reames* 1994; *Vainio* 2003)
- ▶ Model predicts the time-evolution of abundance ratios of high-to-low rigidity ions as well (*Ng et al.* 1999)

Ion acceleration at IP shocks

Modeling of SEPs in IP space

Rami Vainio

Solar operation

SEP acceleration and

transport

models

Particle transpor equations

Modeling SEP event

Particle acceleration a shocks

Self-consistent

Generation of waves I SEPs

Ion acceleration at IP shocks

Conclusion

- ▶ Problem with Bell's (1D) theory: no particle escape upstream
- Possible cures:
 - focusing
 - time dependence
- Rice et al., Zank et al., Li et al.
 - Bell's analytical model in a small region around the shock
 - ad-hoc free escape boundary upstream
 - diffusive transport downstream and focused transport upstream
 - Quasi-steady state model
- ► Lee (2005)
 - ▶ Uses $f_- = \int_{-1}^0 f \ d\mu$ and $f_+ = \int_0^{+1} f \ d\mu$ instead of $\int_{-1}^{+1} f \ d\mu$
 - ⇒ self-consistent wave-generation and escape by focusing
 - Quasi-steady state model
- Vainio & Laitinen (in preparation)
 - fully time dependent MC simulations (xpdf/acroread)

Conclusions

Modeling of SEPs in IP space

Rami Vainio

Introduction

Solar energetic part events

SEP acceleration ar transport

Test-partic

Particle transpor

Modeling SEP even

Particle acceleration a shocks

Self-consistent models

Generation of waves b SEPs

Ion acceleration at IF shocks

Conclusions

 SEP transport in the interplanetary space in principle well understood

- test-particle modeling
- self-generated waves
- Numerical methods to solve the transport equations
 - Finite difference solutions
 - Monte Carlo simulations
- Ad-hoc source modeling has yielded empirical information of
 - interplanetary transport conditions
 - interplanetary shock acceleration
- Physical modeling of interplanetary acceleration has experienced several breakthroughs over the last few years
 - role of focusing in particle escape
 - importance of full time dependence in self-consistent modeling

Acknowledgement: COST-724 is thanked for financial support!