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1. Introduction
Space Weather (SpW) is a 
new subject which has not 
yet become widely 
understood or appreciated.



COST 296

SpW processes can 
include changes in the 
IMF, CME from the sun 
and disturbances in the 
Earth's magnetic field.
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The effects can range 
from damage to 
satellites to disruption of 
power grids on Earth.
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Any SpW service must be 
able to give reliable 
predictions of the Sun’s 
activity and its impact on the 
space environment and 
human activities.
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Mathematical 
modeling of highly 
non-linear and time 
varying processes is 
difficult or impossible.
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Data driven modeling 
methods are used in 
parallel with 
mathematical modeling
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Demonstrated by the 
authors and others that 
the data driven NN
modeling is very 
promising 
(Tulunay, Y., 2004 and references there in).
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NN systems are motivated
by imitating human learning 
processes. 
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Whereas, the fuzzy systems 
are motivated by imitating
human reasoning processes.
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NN have been used 
extensively in modeling 
real problems with 
nonlinear characteristics.
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The main advantages of 
using NNs are their 
flexibility
and ability to model
nonlinear relationships.
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Unlike other classical large 
scale dynamic systems, 
the uniform rate of 
convergence toward a steady 
state of NN is essentially 
independent of the number of 
neurons in the network
(Özkök, 2005; Tulunay, E., 1991). 
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Basic structure and 
properties of 

neural networks
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Fig. 1.1. Architecture of the METU-NN model
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A neuron is an 
information-processing 
unit consisting of connecting 
links, adder and 
activation function or 
non-linearities.
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The adder sums
bias and input signals
weighted in the neuron’s 
connecting links.
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Activation function limits
the extreme amplitudes of 
the output of the neuron 
(Haykin, 1999).
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2.1. Case Study
Due to the rapid growth around 
the world in wireless 
communications at GHz 
frequencies, studies of solar 
noise levels at such freq. have 
become popular.
(Lanzerotti, 2002)
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GOES SXR flux data of 2003 and 
2004 are used to 
train the METU-NN to forecast
the number of occurence of large 
X-ray bursts (events) in specific 
time-intervals, Tulunay et al. (2005).
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Input Data

• Max. of SXR flux / month (2003 & 2004)

• Smallest of maxima is 5.35*10-6 w/m2.

• SF > 5.35*10-6 w/m2 considered

• Upper deciles of data : 34*10-6 w/m2.
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Table 2.1. METU-NN Inputs

i
Number of 
SF values

• SF > 34.*10-6 w/m2

• 34.*10-6 w/m2 > SF > 5.35*10-6 w/m2

• SF < 5.35*10-6 w/m2

ii First Diff. of (i)
• SF > 34.*10-6 w/m2

• 34.*10-6 w/m2 > SF > 5.35*10-6 w/m2

• SF < 5.35*10-6 w/m2

iii Second Diff. of (i)
• SF > 34.*10-6 w/m2

• 34.*10-6 w/m2 > SF > 5.35*10-6 w/m2

• SF < 5.35*10-6 w/m2

iv Day of SF • In Julian day numbers

v ‘Day’ in trig. funcs.
• (Sin (2*pi*(day) / 365))
• (-Cos (2*pi*(day) / 365))
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Table 2.2. Selected periods for Training and Operation of 
METU-NN

Training 1 April 2003 30 January 2004

Operation 31 January 2004 1 December 2004
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Output

• Forecast of the number of 
occurence of 
large X-ray bursts (events)
one month in advance.
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2.1.Results



Fig. 2.1. The number of events: observed (red), and 
forecast (blue) one month in advance between 31 Jan. - 1 

Dec. 2004



Fig. 2.2. The scatter diagram of the forecast versus   
observed number of events 
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Table 2.3. Errors on the forecast number of events

RMS error 1.13

Absolute error 0.72

Cross Correl. Coeff. 0.57
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2.3.Conclusions



COST 296

METU-NN model
forecasts
number of occurrence of 
‘events’
in the next 30-day interval with 
an absolute error of 0.72
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• At a significance level of 
0.05, the cross correlation 
coefficient between the 
observed and forecast 
number of occurrence of 
events is 0.57.
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3.1. Case Study
(Özkök, 2005)
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METU-NFN is derived by 
including some expert 
information in the METU-NN
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Applicability of the
neurofuzzy systems on
the ionospheric forecasting 
studies is demonstrated. 
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Table 3.1. A comparison of the results with METU-NFN & 
METU-NN models for TEC forecasting process

NFN 1NN* METU-NN**

Cross correlation 0.98 0.99

MSE 3.77 3.041

RMSE 1.94 1.74

Average Absolute Error 
(TECU) 1.32 1.16

Average Epoch Duration 
(ms) 1717 3233

*NFN 1NN: NFN model drives METU NN Model. 
**Neural Network Model
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3.2. Conclusion
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• Applicability of the neurofuzzy models 
on ionospheric forecasting has 
been shown.

•With a considerable large input-output 
data set the NN models produce 
better results.
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•NFN models offer an alternative when 
data are not enough.

•NFN models may be used for faster t
raining and short operation times at 
the expense of performance.
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