

ESA Space Weather Programme Study Final Review

<u>WP 3230</u>

PROTOTYPING Activity : MHD-Based

Imperial College / Peter Cargill

ALCATEL Space-LPCE Consortium final presentation, 6 December 2001 WP3230, Peter CARGILL, Imperial College LONDON

ESA Space Weather Programme Study Final Review

Prototyping Activities

Objective

• To develop a prototype forecasting scheme that predicts conditions at 1 AU based on solar input of coronal mass ejections (CMEs)

Methodology

• To make use of current physical understanding of CMEs based on analysis of solar and interplanetary data.

<u>Validation</u>

• Comparison of predictions with five selected events from 1997 – 2000 interval.

Methodology

- Relation between CME onset speed and CME speed (and arrival time) at 1 AU (Gopalswamy et al., 2000).
- Relation between CME speed at 1 AU and magnetic field strength there (Owens and Cargill, 2001).
- Relation between hemisphere of origin, "handedness" of CME, and solar cycle number (Bothmer and Rust, 1997))
- Relation between CME speed and 2 6 MeV particles at 1 AU (Reames, 1997)

- Relation between Dst index and solar wind speed and magnetic field (Burton et al., 1975; O'Brien and McPherron, 2000)
 Events Selected
- January 6 11, 1997. Slow magnetic cloud (Telstar-401 event)
- November 3 6, 1997: Fast magnetic cloud.
- April 20 24, 1998. Confused event, perhaps high speed at Sun. Expected to be a tricky one.
- May 2 5, 1998: Major CME, magnetic cloud.
- April 2 6, 2000: Major CME, magnetic cloud.

Results: Observed Quantities

Date	V(Sun)	V(1AU)	T(1AU)	B(1AU)	Dst (min)	Duration
6/1/97	200 km/s	550 km/s	3d,12h	16	-80 nT	4h
4/11/97	830	450	2d,16h	19	-80	6h
20/4/98	1640	500	3d,10h	17	-80	Oh
2/5/98	1040	850	1d,12h	38	-220	40h
4/4/00	1000	600	2d,0h	30	-70	Oh

Results: Predicted Quantities

Date	Storm	V(1AU)	T(1AU)	B(1AU)	Dst (min)	duration
	onset					
6/1/97	4d,18h	482 km/s	4d,14h	22 nT	-126 nT	12h
4/11/97	2d,10h	532	2d,7h	24	-145	14h
20/4/98	1d,4h	1231	1d,2h	57	-623	38h
2/5/98	1d,22h	691	1d,19h	31	-221	22h
4/4/00	2d,0h	658	1d,21h	30	-207	20h

ALCATEL Space-LPCE Consortium final presentation, 6 December 2001 WP3230, Peter CARGILL, Imperial College LONDON

Comments

- Four events are not too bad. One event fails badly. Believed to be erroneous velocity at Sun.
- Method compromised to a degree by not being able to predict the duration of Southward IMF at 1 AU.
- This affects Dst prediction. Dst values will be increased by shorter events.
- Magnetic field predictions at 1 AU do surprisingly well.
- Arrival times assume simple model. Recent work (Gopalswamy) suggests can do better.

The Future

Major failings are seen to be:

- Velocity at Sun is projection on sky. Need line-of-sight velocity for accurate forecasting.
- At present, no prediction of duration of Southward IMF at 1 AU. Present observations cannot give this.
- Direction of CME not known on the basis of single spacecraft observations.

Major successes are:

- Magnetic field prediction at 1 AU based on correlations seems to work better than expected.
- Empirical models of arrival times worth pursuing.

Conclusions

- Magnetic storm prediction based on solar observations works for some aspects, not for others.
- Additional observations (especially from Stereo spacecraft) are likely to be invaluable.
- Never make a definite storm prediction based on solar-only data (too many uncertainties).
- Underpinning science must be understood in parallel.
- Web-based implementation is available.

ESA Space Weather Programme Study Final Review