

	CLRC	Qineti P	ayl	oad	🛞 Re	equ	ire	en	(1e	A nts	5	ONE	RA	-
CSMR	Measure what ?	What instrument ?	Where	Spatial sampling requirement	Temporal sampling	Max Gap in G.S.	No. of instances	Mass (kg)	Power	Dimensions (cm)	Pointina rea	Sampling direction	Data Rate (Raw) kbit/s	Data Rate (Reduced) kbit/s
1	Solar FUV / X-rav images	Whole disk imager	11/SS/GFO	Single point measurement in	1 hr	20 min	1	10	3	200x25x40	several arcsec		5	0.5
2	Solar coronadraph images	Coronagraph	11/14/15/ SS/ GEO	Single point measurement in space	1 hr	20 min	1	17	25	80x30x30	several arcsec		5	
3	Stereo visible or UV images of Sup-Farth space	Coronagraph	14+15	2 noints well separated from Earth e.g. 14.8 15	1 hr	20 min	2	10	3	200x25x40	several arcsec		5	0.5
46	Auroral Imaging Auroral oval, size location & intensity	Auroral imager	PFO / Molniva	From polar elliptical orbit Single point	1 hr	20 min	2	29	30	60x70x25			11	
R to 11	X-rav flux & spectrum/CSMR 11)	X-rav nhotometer / snectrometer	11/SS/GFO	Single point measurement in	1 min	20s	1	27	27	26x14x11				
12	UV flux	UV photometer	11/SS/GEO	Single point measurement in space	1 dav	8 hours	1	27	27	26x14x11			0.25	
13	EUV flux	EUV photometer	L1/SS/GEO	Single point measurement in space	1 day	8 hours	1	27	27	26x1 4x11			0.25	
	Vsw and Nsw	Thermal energy	11	Single point measurement at	1 min	3 min	1	5	4	25x20x20		sample all 4PI solid	6	01

ata	Downli	nk (2) – Typic	al Link budge	t for a 3c
m	argin ar	nd a 10W tran	smitter output	power
Data		c	rbit	Manualant
Rate (kbps)	L4 (1.496E+08 km link distance)	L1 750 000km halo radius (1677050km link distance)	L1 400 000km halo radius (1552417km link distance)	Magnetospheric (20RE/127400km link distance)
0.05	0.399m	0.0069m (isotropic - 6.81db	0.0069m (isotropic - 7.48db margin)	0.0069m
0.5	1.261m	0.0141m (176.4377 deg	0.0131m (190.6078 deg	0.0069m
5	3.988m (0.63 deg beamwidth)	0.0447m (55.794 deg	0.0414m (60.275 deg beamwidth)	0.0069m
50	12.61m	0.1414m (17.644 deg beamwidth) – Either steerable antenna or more	0.1308m (19.0654deg beamwidth) – Either steerable antenna or more power required	0.0107m
500	39.874m	0.447m (5.579 deg beamwidth) – Either steerable antenna or more power required	0.4138m (6.027 deg beamwidth) – Either steerable antenna or more power required	0.034m

c 🦿	inetiQ	astrium FINNISH METEOROLOGI INSTITUTE	CAL	A -	ONERA
tch_	hilzorg	Bank and Costs for I	Fur		oration
licii-	IIKels -	- Kalik allu Costs for f	Lui	J + Collar	Joi auon
itch-hi	kers rank	ed according to need (descr	ibed	later in cost	t analysis).
acte a	e space	sagment programme costs	(un	o 2015) for	r each hit
JSIS a	ic space	segment programme costs	(up	0 2015) 10	i cach inte
ker ty	pe				
Optior	CSMR	Description	Rank	Rationale	Cost without Ground interfa (MEuro)
14	72	Dose monitor	1	Human safety	31
11	63 to 65	High en <mark>ergy ion detec</mark> tor	2	GCR's, SEPE's	23
12	66 to 67	High energy electron spectrometer	3	Killer electrons	90
13	69 to 71	Debris monitor	4		20
	53 to 55	Medium energy electron spectrometer	5		69
8	EG to E9 62	High energy ion detector/GEO	6		20
8	30 10 30, 02		-	No.	59
<u>8</u> 9 10	59 to 61	High energy ion detector/GTO			
8 9 10 6	59 to 61 13	High energy ion detector/GTO EUV photometer	8		19
8 9 10 6 5	59 to 61 13 12	High energy ion detector/GTO EUV photometer UV photometer	8		<u>19</u> 16
8 9 10 6 5 4	59 to 61 13 12 8 to 11	High energy ion detector/GTO EUV photometer UV photometer X-ray photometer /spectrometer	7 8 9 10		19 16 66
8 9 10 6 5 4 3	59 to 58, 62 59 to 61 13 12 8 to 11 4,6	High energy ion detector/GTO EUV photometer UV photometer X-ray photometer / spectrometer Auroral imager	7 8 9 10 11		<u>19</u> <u>16</u> 66 104
8 9 10 6 5 4 3 2	59 to 58, 62 59 to 61 13 12 8 to 11 4,6 2	High energy ion detector/GTO EUV photometer UV photometer X-ray photometer / spectrometer Auroral imager Coronagraph	7 8 9 10 11 12		19 16 66 104 59
	59 to 58, 62 59 to 61 13 12 8 to 11 4,6 2 1	High energy ion detector/GTO EUV photometer UV photometer X-ray photometer / spectrometer Auroral imager Coronagraph Whole disk imager	7 8 9 10 11 12 13		19 16 66 104 59 48
	59 to 58, 62 59 to 61 13 12 8 to 11 4,6 2 1 36 to 38	High energy ion detector/GTO EUV photometer UV photometer X-ray photometer / spectrometer Auroral imager Coronagraph Whole disk imager Magnetograph	7 8 9 10 11 12 13 14		19 16 66 104 59 48 134

	IM FINNISH MITTOROLOGICAL INSTITUTE	
Dedicated u	sing Maximum Hi	tch-hikers
• CSMR not met by	Hitch-hiking due to lac	ck of hosts
CSMR not met by Hitch-	Instrument	Orbit
CSMR 3	17kg Coronagraph	At 1AU separated
00140 75	11kg Radio Wave Detector	heliocentric/ L4/ L5
CSMR 75		
CSMR 75 CSMR 23-27	5kg Thermal energy ion spectrometer	L1
CSMR 75 CSMR 23-27 CSMR 36-38	5kg Thermal energy ion spectrometer 3kg Magnetometer	L1
CSMR 75 CSMR 23-27 CSMR 36-38 CSMR 39-43	5kg Thermal energy ion spectrometer 3kg Magnetometer 3kg Magnetometer	L1 Magnetosphere

Large instruments requiring dedicated									
• CSMR that are assumed not met by Hitch-hiking due to instrument size									
CSMR possibly not met by Hitch-hiking due to instrument size	Instrument	Orbit							
CSMR possibly not met by Hitch-hiking due to instrument size CSMR 1	Instrument 10kg, 200x25x40cm Whole disk Imager	Orbit L1/GEO/SS							
CSMR possibly not met by Hitch-hiking due to instrument size CSMR 1 CSMR 2	Instrument 10kg, 200x25x40cm Whole disk Imager 17kg 80x30x30cm Coronagraph	Orbit L1/GEO/SS 1AU helio/L1/GEO/SS							

CLRC	QinetiQ astrium		NISH TEOROLOGICAL TITUTE	A -	ONE	RA
Full 1	Dedicated Space	craft at coi	e orbit lo	cations (G7	ΓO/GE	O
optio	ns assumed as co	ore GTO.a	s launch o	costs to GT	O chea	D)
- F						·r /
	CSMR	Orbit	Spacecraft	Launcher	Launch cost	
	CSMR 3 (17kg Coronagraph)	Leading heliocentric orbit at 1AU	1 micro- spacecraft <120kg	Microsat configuration on ASAP5 to GTO	\$3M	
	CSMR 2/3 (17kg Coronagraph), CSMR 75 (11kg Radio Wave Detector)	Trailing heliocentric orbit at 1AU	Mini- spacecraft, <317kg	Eurockot/Star37	\$18M	
	CSMR 39-43 (3kg Magnetometer)	Magnetospheric orbit	SWARM-type constellation	Possibly Stacks of 6 in Microsat configuration on ASAP5 to GTO	\$3M per stack	
	CSMR 52 (3kg Thermal energy ion spectrometer), CSMR 53 to 55 (6kg Medium energy electron spectrometer, CSMR 59 to 61 (5kg Thermal energy ion spectrometer), CSMR 66 to 67 (8kg High energy electron spectrometer)	GTO	4 micro- satellites equally separated in argument of perigee	ASAP5 to GTO	\$3M	

QinetiQ as Full Dedicated Spa	trium	t with L1 as	the prime opti	ONERA onal orbit
		location		
CSMR	Orbit	Spacecraft	Launcher	Launch cost
	L1	Either several microspacecraft	ASAP5 to GTO (8 microsats)	\$3M per satellite
CSMR 1 (10kg) Whole disk Imager, CSMR 12 (27kg UV Photometer), CSMR 13 (27kg EUV Photometer), CSMR 23-		Or several microspacecraft <220kg wet,	ASAP5 to GTO (4 minisats in bananasat	\$6M each
27 (5kg Thermal energy ion spectrometer) and CSMR 36- 38 (3kg Magnetometer), CSMR 56 to 58, 62 (5kg Thermal energy ion spectrometer >10MeV ions, CSMR 63 to 65 (8kg High		Or 1-2 minispacecraft	ARIANE 5 to GTO (4 minisats in SPELTRA) Must find 4 similar partners otherwise pay ¼ of launch cost of \$130M or \$32.5 M	\$6-8M per satellite if all minisat ring filled
energy ion detector)		Or 1 minispacecraft <317kg	Eurockot/Star37 Direct to L1	\$18M
CSMP 4 6 (20kg) Auroral	SS	2 spacecraft	Direct (START)	\$10M
Imager, CSMR 69 to 71 (Debris monitor)	dusk >600km	separated in true anomaly by	Dual/Multi(DNEPR/ EUROCKOT	\$2-3M each

Platforms used as dedicated space weather spacecr Platform Stabilisation Launch Mass assume CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 30kg	CINER Atforms used as dedicated space weather spacecra Afforms used as dedicated space weather spacecra Platform Stabilisation Launch Mass assumed CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 30kg SWARM Spin Stabilised 30kg			
Platforms used as dedicated space weather spacecr Platform Stabilisation Launch Mass assume CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg ASTRID Spin Stabilised 30kg IEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	Atforms used as dedicated space weather spacecra:	QinetiQ astrium	METEOROLOGICA	
Platform Stabilisation Launch Mass assume CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	Platform Stabilisation Launch Mass assumed CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	Platforms used as de	adjusted space	weather spacecraf
Platform Stabilisation Launch Mass assume CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg ASTRID Spin Stabilised 30kg LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	Platform Stabilisation Launch Mass assumed. CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg ASTRID Spin Stabilised 30kg LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	Tationins used as u	cultated space	weather spaceeral
Platform Stabilisation Launch Mass assume CNES microsatellite (e.g. 3 axis 120kg PICARD 3 axis 20kg ASTRID Spin Stabilised 30kg LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	Platform Stabilisation Launch Mass assumed. CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg ASTRID Spin Stabilised 30kg I EOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg			
Platform Stabilisation Launch Mass assume CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg ASTRID Spin Stabilised 30kg LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	Platform Stabilisation Launch Mass assumed. CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg ASTRID Spin Stabilised 30kg LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg			
Platform Stabilisation Launch Mass assume CNES microsatellite (e.g. 3 axis 120kg PICARD 3 axis 20kg ASTRID Spin Stabilised 30kg LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	Platform Stabilisation Launch Mass assumed CNES microsatellite (e.g. 3 axis 120kg PICARD			
CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg ASTRID Spin Stabilised 120kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	CNES microsatellite (e.g. 3 axis 120kg PICARD Spin Stabilised 30kg LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	Platform	Stabilisation	Launch Mass assumed
ASTRID Spin Stabilised 30kg LEOSTAR 200 00 00 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	ASTRID Spin Stabilised 30kg I EOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	CNES microsatellite (e.g. PICARD	3 axis	120kg
LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	LEOSTAR 200 3 axis 250kg STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	ASTRID	Spin Stabilised	30kg
STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	STRV c/d Spin Stabilised 120kg SWARM Spin Stabilised 30kg	LEOSTAR 200	3 axis	250kg
SWARM Spin Stabilised 30kg	SWARM Spin Stabilised 30kg	STRV c/d	Spin Stabilised	120kg
		SWARM	Spin Stabilised	30kg

QinetiQ astrium Dedicated rank and c	ost	– L1 p	referred, Full de	edi	ONER	A
Euro + collaboration	Optior	CSMR	Description	Rank	Rationale	Cost without Ground interface
• Dedicated spacecraft ranked according to	6	23 to 27, 36 to 38, 56 to 58, 62, 63 to 65	Thermal energy ion spectrometer, Magnetometer, Thermal energy ion spectrometer, High energy ion detector	1	Upstream solar wind monitoring	(MEuro) 52
cost analysis).	5	1, 8 to 11, 12, 13	Whole disk imager, X-ray photometer / spectrometer, UV photometer, EUV photometer	2	Solar monitoring	169
 Costs are space segment programme costs (up to 2015) for each spacecraft type 	4	52, 53 to 55, 59 to 61, 66 to 67	Thermal energy ion spectrometer;/lonosonde,/UV Imager, Medium energy electron spectrometer, Thermal energy ion spectrometer, High energy electron spectrometer,	3	Radiation belt monitoring	246
each spacecraft type	1	3	Coronagraph	4	Viewing Earth- directed CME's	69
	2	2, 3, 75	Coronagraph, Radio Wave Detector	5	Viewing Earth- directed CME's	154
	7	4,6, 69 to 71	Auroral imager, Debris monitor	6	Auroral monitoring	96
	8	4,6	Auroral imager	7	Auroral	87
	3	39 to 43	Magnetometer	8	Magneto- spheric dynamics	150
			Total Cost of All Hitch-Hikers			1023

