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1. Introduction

Space weather refers to conditions in space that can influence technological systems and
endanger human health and life. The effects are described in detail in WP 1300 and 1400.
Space weather services require rea-time forecasts. The available services worldwide and
a suggested future service are described in WP 3110. IRF-Lund offers space weather
service, being a Regional Warning Center within the International Space Environment
Service.

Space wesather forecast service must be available in real-time to mitigate the effects for
the users. The service must also be useful and understandable to the user. Space weather
deals with real-world problems, i.e. conditions and processes that most often are
described as nonlinear and chaotic. Real-world data means outliers and data gaps.

Neurocomputing techniques have therefore been successful in modeling and forecasting
space weather conditions and effects, simply because they can describe non-linear chaotic
dynamic systems. They are also robust and still work despite data problems.

Also expert systems, genetic algorithms, hybrid systems such as neurofuzzy systems and
combinations of neural networks and MHD models have been used.

We therefore recommend the use of integrated methods, herewith using all knowledge
available. Such integrated systems are “Knowledge-Based Neurocomputing” (KBN,
2000). Traditionally Artificia Intelligence (Al) represented the symbolic approach to
knowledge processing and coding. Recently, however Al (the new Al) also includes soft
computing methods such as neural networks, fuzzy systems, genetic algorithms and so
on.. Theterm Intelligent Hybrid Systems (HIS) is used for the focusing on the integrating
of soft computing methods. We however prefer using the term KBN since it emphasizes
the processing, representation of knowledge using neural networks.

Neural networks (Lundstedt 1997; Haykin 1994, see appendix) can map a vector of input
(or nodes) to a vector of outputs through layers of nonlinear functions. Thereis a class of
neural networksthat is called recurrent, because past outputs are fed back to the systemin
addition to inputs. The past outputs are termed "context nodes’ and represent the internal
state of the neural network. Since formally the neural networks can be rewritten as a set



of differential equations, this number also indicates the number of differential equations
needed to model the dynamics e.g. described by the AE index (of course such equations
would still need to be driven by the solar wind input). Recently the AE dynamics was
investigated using Elman recurrent neural networks (Gleisner and Lundstedt, 2001).
When the number of context nodesis varied so as to minimize the network prediction
error for validation data, it turns out that the optimal number of context nodesis4. This
provides an indication of alow number of magnetospheric degrees of freedom. In
(Vassiliadis et a., 2001) we identify the freedom degrees with four current systemsin the
magnetosphere. Thisis an important illustration of how neural network model can be
physically interpreted.

Neural networks are not black boxes to quote Omlin and Giles (KBN, 2000), “Until
recently, it was awidely accepted myth that neural networks were black boxes, i.e. the
knowledge stored in their weights after training was not accessible to inspection, analysis,
and verification. Since then, research on that topic has resulted in a number of algorithms
for extracting knowledge in symbolic form from trained neural networks...”

The first prediction of the Dst-index, characterizing the global magnetospheric state,
using only solar wind parameters and neural networks was developed over 10 years ago
and presented at the IAGA meeting in Vienna 1991 (Lundstedt, 1991). Many similar
studies of the solar wind interaction have after that been carried out. Three thesisin Lund
have been published (Wu, 1997; Wintoft, 1997 and Gleisner, 2000). It wasfound in (Wu
and Lundstedt, 1996) that a neural network gives the best prediction of Dst, by creating
by itself a mathematical function for the solar wind-magetospheric coupling, i.e. better
than with a predefined coupling function.

Thefirst Artificial Intelligence (Al) approach to model the solar-terrestrial system was
presented in late 80-ties by Lundstedt (Lundstedt, 1990). An inductive expert system was
used. After that we have been working on the Lund Space Weather Model (L undstedt,
1998, 1999) that is based on Al techniques or Knowledge-Based Neurocomputing
(Lundstedt, 1997).

The prototype is an implementation of part of that model. During the work on the Lund
Space Weather Model several forecast modules have been developed based on neural
networks. New forecast modules have also been developed for the use within the
prototype 1. The prototype has been implemented in Java.

2. Modelsbased on Al techniques and KBN

Here follows a description of different models based on AI/KBN, developed by several
research groups. The models devel oped by the Lund group is part of the development of
the Lund Space Weather Model, which isan intelligent hybrid system (IHS) . A similar
IHS but for only the magnetosphere/ionosphere the so called Magnetospheric



Specification Model (MSM) has been devel oped by the Rice group and implemented by
Stirling Software for NOAA/SEC. Html links to input data for forecasts can be found in
appendix Al.

2.1 Prediction of long-term solar activity
2.1.1 Asdescribed by the sunspot number and solar magnetic field data

Long-term solar activity refersto activity on years, associated with the 11 years solar
cycle. Predictions of long-term solar activity are important because of the solar effect on
satellite drag, communication and climate changes.

Many groups have developed neural network prediction models of the sunspot number
(Ashmall and Moore, 1998; Conway et al., 1998; Calvo et al., 1995; Fessant et al., 1995;
Liszka, 1993) in order to predict the the time and amplitude of the solar cycle maximum.

The sunspot number (R) is given by
R=k(10g + f)

where f isthe number of individual spots, g isthe number of sunspot groupsand k isa
coefficient to adjust for differences in the observer or telescope.

In their study, Calvoet a. started by constructing an attractor. In this way they obtained
the embedded dimension and therefore how many variables they need to describe the
dynamic system. From that they |learned how many input nodes they needed for the
neural network. They found they needed twelve input nodesi.e. 12 yearly valuesfor a
prediction of next year value. Ashmall and Mooreon the other hand found they needed
monthly values (one monthly value each year) to predict next year. Mundt et al., 1991
showed that the solar activity dynamics could be described by a chaotic system. That
implies that forecasts longer ahead than a couple of years are impossible, if not further
information is available. Schatten et a., (1978) found a relation between that solar
magnetic field strength at solar poles at solar cycle minimum and the coming amplitude
of the solar cycle maximum. With that precursor knowledge Ashmall and Moore
managed to improve their predictions. They predicted the monthly maximum for solar
cycle to be 160+10 in January 2000. The observed maximum seemed to have occurred
around July 2000 with a maximum of 169.1 (Figure 1).
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Figure 1 shows monthly sunspot number R for cycles 15, 22 and 23. Latest value plotted
isfor August 2001.

No predictions, using neural networks and the less noisy monthly sunspot group number
constructed by Hoyt and Schatten, (1998) have been developed. It spans over a 385-year
period. Wavel et studies have however been carried out in order to study the Maunder
minimum. Studies about how long-term solar activity might be related to to climate
changes are carried out at IRF-Lund.

2.2 Predictions of medium- and short-term solar activity

Medium-term solar activity refersto activity on days to months associated with active
regions. Short-term activity refers to activity on hours to days.
2.2.1 Coronal mass g ections

Coronal mass gjections (CMES) are the ways the Sun getsrid of its magnetic field
globally in huge loops. Largest mass gjected: 5-50 billion tons. Frequency of occurrence:
3.5/day events (solar activity max) and 0.2 events/day (solar min). Speed: 50-2000km/s.
Fast CM Es with associated shocks cause the most severe space weather effects.



Figure 2 shows a halo coronal mass g ection, observed by LASCO on board SOHO on
September 24, 2001.

Observations with the coronagraph LA SCO onboard SOHO give us information about
CMEs. Together with observations, using the EIT instrument onboard, isit possibleto
determine whether or not ahalo CME (Figure 2) is headed directly at us or from us.

No method, based on KBN, exists today capable of predicting CMEs.

However, a new method based on wavelet power spectra of SOHO/MDI mean field
measuremets, seemed to be able to detect CMEs (L undstedt et al.,2001; Boberg and
Lundstedt, 2000). The wavelet power spectra of the solar mean magnetic field show
peaks at times of CMEs. The mean field signal of the CME is now studied by the Lund
group to see whether or not it’s possible to forecast CM Es with the use of neural
networks from the signal.

2.2.2 Proton events
Fast CMEs cause proton events that can last several days. Proton events often cause

satellite problems. A proton event is defined from the proton flux (Appendix A3). The
proton flux is measured by GOES (Figure 3).
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Figur e 3 shows the proton flux (proton event) caused by a coronal mass gjection on
September 23, 2001.

Xue et a. (1997) have developed predictions of proton events. They used a MLP neural
network and as inputs solar flare location, duration, X-ray flux and radio flux. Most
successful have Gabriel and colleagues (2000) been, using a neurofuzzy system with X-
ray solar flare flux intensity asinput and as output proton events days ahead.

2.2.3 Solar flares
GOES Xray Flux (5 minute data)
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Figure4 showsthe X-ray intensity at times of asolar flare, observed by GOES on
October 14, 1999.

Intense solar flares cause problems for the HF communication.

A solar flaresis alocalized explosive release of energy in the form of electromagnetic
radiation and energetic particles. The energy released is stored the magnetic field. They
occur in active regions and sunspots with complex magnetic fields. The brilliance of athe
flareis usually measured in two frequency bands. optical and X-ray. The X-ray index is
based on the peak energy flux of the flarein the 1 to 8 A soft X-ray band (Figure 4)
measured by geosynchronous satellites.

Bradshaw et al. (1989) have developed a connectionist expert system (KBN) that predicts
type of X-ray class solar flare from inputs about the Mclntoch sunspot classification
classes and Mount Wilson magnetic field complexity. A similar work has been carried
out by Aso et a., (1994). A monitoring and forecasting system based on neura networks
is under development for the Kanzelhohe Solar Observatory in Austria (Steinegger et al.,
1999).

2.2.4 Coronal holes



Coronal holes are regions in the corona with open magnetic field, from where the fast
solar wind (high speed plasma streams) flow. The fast solar wind from the coronal holes
can cause satellite problems, due to decharging. A large coronal hole last often several
solar rotations. The effect of the fast solar wind is therefore repeating with a 27 days
period.

caronal
hole

Yohkoh X-ray picture of the Sun
February 21, 2000

Figure 5 shows a corona hole observed in X-ray by the Japanese spacecraft Y ohkoh.

Several groups, e.g. in USA and Japan, are working on automatically detect coronal holes
using pattern recognition techniques. At SEC the group led by Pat Bornman will use the
NASA spacecraft Solar X-ray Images (SXI) as input.

2.3 Prediction of solar wind parameters

2.3.1 Solar wind velocity
Thefast solar wind is coming from coronal holes with regions of open magnetic field and
the slow solar wind is believed to come from coronal streamers regions of closed

magnetic field.

03
UT(hours)

Figur e 6 shows the solar wind velocity, measured by the spacecraft ACE, resulted from
the corona holein Figure 5.

The solar wind velocity is measured by several satellites, e.g. by ACE and SOHO.
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Since the solar wind velocity is determined by the solar magnetic field topology it should
be possible to predict the velocity from ground or space based observed solar
magnetograms (images of the solar magnetic field).

In Lund predictions have been developed of the solar wind velocity (V) from only solar
magnetic field data using a hybrid system of a RBF network and a MHD-model (Wintoft
and Lundstedt, 1997). A potential field model Hoeksema(1984) was used to calculate the
magnetic field strengths on the same field line at the photosphere Bo=B(Ro) and the
source surface (=2.5Rp) Bs=B(Rs) from WSO magnetograms. The RM S magnetic field
Brms Was computed from daily WSO magnetograms. By defining a vector x(t) = (Bo, Bs,
Brus) the input to the network was the time series x(t-2), x(t-1), x(t) and the V (t+3) i.e.
the velocity three days ahead the output. The RBF network was trained on magnetograms
during solar cycle 21 and tested on solar cycle 22. A correlation coefficient of 0.58, a

RM SE (root mean square error) of 90 km/s and an average relative variance of 0.68 was
obtained. The KBN is doing a better job than the method presented by Wang and Sheely.
They reached a correlation coefficient of 0.4 for daily solar wind parameters.
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solar magnetograms, via a potential field model, the expansion factor was derived. That

11



factor was then used as input to aradial-basis neural network and output was the solar
wind velocity 1-2 days ahead (Figure 1) (Wintoft and Lundstedt, 1999). The results were
only marginally better.

2.3.2 Solar wind B, component

No method based on KBN technique has yet been implemented. However, neural
networks could have been trained with the solar information about results found about
helicity (Bothmer and Schwenn, 1998 ) to predict times of southward directed Bz
component.

High latitude solar filaments show left-handed helicity in the northern hemisphere and
right-handed helicity in the southern solar hemisphere. It has also been found by Bothmer
and Rust, 1997) that: A southward directed magnetic field in the leading part with a
northward directed field trailing is predominant for the approximately 11 years from
shortly after the peak of an even numbered cycle until the peak of the next odd numbered
cycle. A northward leading magnetic field is most likely during the period betwenn the
peak of an odd cycle and the peak of an even cycle. Other finding are (Zhao et a., 2001)
that halo CM Es during minimum are more geoeffective than during the solar maximum
due to the heliospheric warp change.

2.4 Prediction electron flux in magnetosphere

Stringer and McPherron (1993) used a neural network to predict day-ahead relativistic
electrons at geosynchronous orbit from Kp index valuses as input.

Both the Rice group and Lund group have developed such predictions. Freeman et al.
(1993) have developed an intelligent hybrid system of MHD models and neural networks

predicting the electron flux. Wintoft and Lundstedt (2000) have developed predictions
based on ACE real-time solar wind data as input to a neural network.

2.5 Prediction of geomagnetic activity

Many different geomagnetic activity indices have been constructed to describe the
geomagnetic activity on time scales from 1 hour to 24 hours, such as AE, Dst, Kp, Ap
and so on. A glossary exists describing various indices (Appendix A3).

2.5.1 Daily Ap index

Alan Thomson has trained neural networks to forecast the daily Ap index (Thompson,
1993) from atime series of only Ap asinpui.
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In adiplomawork for IRF-Lund Ann Hoberg (1999) devel oped a neural network model
to predict Ap from predictions of solar wind velocity. The solar wind velocity was
predicted from solar magnetograms, potential models and a neural network as described
earlier. Similar work has also been carried out by Detman et al., at SEC.

2.5.2 Hourly indicesKp, Dst, AE

Many groups (Freeman et a., 1993; Detman, 1994; Lundstedt 1991, 1992a; L undstedt
and Wintoft, 1994, Wu, 1997, Gleisner 2000) have used the solar wind data to predict
geomagnetic activity. Different solar wind parameters have been selected as inputs for the
neural networks. Most, often the solar wind velocity (V), density (n), and the southward
directed magnetic field (B,) for atime history, have been used. However, the electric
field (Ey) and dynamic pressure (p) and other magnetic field component and standard
deviation have also been used as input.

ILas’[ upda’[e:ﬂ'—ldul—zﬂﬂﬂ 11:11:|{]4 (UT) |

_o0b -
N o |
T DD{E : :
‘?E Eg: HH ]
c EE:EDDDHH Do ___ o i
'1I5 | 1? '1I8

s of H |
¥33§EUDDDDDDDDDDDDH HHHHJHHH ]
'15 18

3 | -
; %DDDDDBDDD'U“ Iﬂuummim ,;
18

date

Figur e 8 shows the predictions of Kp available in real-time on the web. The neural
networks use solar wind data as input from ACE. During the Bastille event, the proton
event caused by the halo CME of July 14, 2000, resulted in incorrect values of solar
wind velocity and density.
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The predictions of the Kp index (Boberg et al. 2000) in Figure 8 are availablein real-
time on Lund's web site (www.irfl.lu.se/spwfo.html). Combined MLP neural networks
were used with atime series of solar wind parametersn, V, and B, asinput.

An Elman recurrent neural network manage to accurately predict all phases of a
geomagnetic storm as described by the Dst index an hour ahead. As an average for the
test data predictions one hour ahead the correlation coefficient between the observed and
predicted Dst reached 0.92 and the corresponding prediction efficiency (1 — average
relative variance) was 85% (Wu and Lundstedt, 1996). The important thing is that the
models never use Dst as input. We only use solar wind data as input! The neural networks
learn by themselves the solarwind-magnetosphere coupling function. The start from
scratch.
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Figure 9 shows a prediction of Dst two hours ahead using only solar wind data as input
and based on an Elman recurrent neural network.

Predictions of Dst are available in real-time on Lund’ s web site.
AE has been predicted by Hernadez et al., (1993) and more recently by Gleisner and
Lundstedt (2000). The predictions are available on the Lund’ s web site

2.5.3 Local geomagnetic field
In (Gleisner and Lundstedt, 2001) predictions of the local geomagnetic field is for the
first time presented using a hybrid neural network. After subtraction of a secularly
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varying base level, the horizontal components of the quiet time daily variations are
modeled with radial basis function networks taking into account seasona and solar
activity modulations. The remaining horizontal disturbance components are modeled with
gated time delay networks taking local time and solar wind data as input.
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Figure 10. A hybrid neural network was applied to data from Sodankyl& Geomagnetic
Observatory located near the peak of the auroral zone. It was shown that 73% of the DX
variance is predicted from solar and solar wind data as input.

254 Aurora

Rubin et al. (1993) trained neural networks to predict the auroral ovals boundary.
IRF-Lund has devel oped forecasts of aurora 1-3 hours ahead from solar wind input data
based neural networks. The forecasts give probabilities of strong, weak or no aurora. The
forecasts are available in real-time as mobile SM'S phone messages and voice messages.

2.6 Prediction of communication conditions

2.6.1 Plasma frequency foF2

15



With both solar and solar wind data as input the foF2 has been predicted (Wintoft and
Cander, 1999a) both 1 hour and 24 hours ahead.
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Figure 11 shows prediction of d (i.e. foF2 variation with solar cycle, season and diurnal
variation removed) one hour ahead from AE as input.

For predictions one hour ahead the overall RMS error on the training set in 1980 was
0.581 MHz with a correlation of 0.976 and 0.661 MHz with correlation ogf 0.97 on test
set in 1981. Predictions of foF2 from substorm index AE, local time and seasonal
information have a so been developed (Figure 11) (Wintoft and Cander, 2000).
Predictions up to 6 hours ahead were possible. Since AE maybe predicted from solar
wind input only, it would also be possible to predict the plasma frequency directly from
solar wind input.

2.7 Prediction of effects
2.7.1 Satellite anomalies
Within the ESA SPEE contract Wu et al., developed predictions of satellite anaomalies

based on the Kp index. Now within the ESA contract SAAPS predictions have been
developed directly from solar wind input. (Wintoft et al., 2000).
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2.7.2 Satellitedrag

Williams (1991) has developed neural networks predictions of the satellite drag based on
inputs about F10.7 cm solar radio fluxes.

2.7.3 Geomagnetically induced currents

Kronfeldt has devel oped predictions based on ACE solar wind dataand GIC
measurements. The trained neural networks are running in real-time and the predictions
are available on the Lund’ s web site
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Figure 12 shows predicted versus measured GIC, 6 April 2000
2.8 Summary of KBN models
Input parameters | Output KBN method Reference
Daily sunspot Daily sunspot SOM and MLP Liszka 93;97
number number
Monthly sunspot Date of solar cycle | MLP and Elman Macpherson et
number maximum and a.,95, Conway et
amplitude al.,98
Monthly sunspot Date of solar cycle | Elman recurrent Ashmall and Moore,

number and aa

maximum and
amplitude

neural network

98
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Y early sunspot Date of solar cycle | MLP Cavoetal., 95
number maximum and
amplitude
Mclntosh sunspots | X class solar flare MLP expert system | Bradshaw et al.,
class and M.Wilson 1989
magn. complexity
X-ray flux Proton event Neuro fuzzy system | Gabriel et a., 00
Flare location, Proton event MLP Xueetd., 97
duration, X-ray and
radio flux
Photospheric Solar wind velocity | RBF neural network | Wintoft and
magnetic field, 1-3 days ahead and potential field L undstedt, 97;99
expansion factor model
SKp Relativitic electrons | MLP Stringer and
in magnetosphere McPherron, 93
day-ahead
Solar wind n, V, Bz | relativistic electrons | MLP Wintoft and
L undstedt, 00
Solar wind Vfrom Daily geomagnetic | MLP Detman et al., 00
photospheric B index Ap
Ap Ap MLP A. Thompson, 93
Solar wind n, V, Bz | Kp 3 hrs ahead MLP Boberg et a. 00
Solar wind Dst 1-8 hrs ahead Elman Lundstedt, 91,
n,\Vv,B, Bz Wintoft and
Lundstedt, 94, Wu
and Lundstedt, 97
Solar wind n,V AE 1 hr ahead Elman Gleisner and
,B,Bz L undstedt, 99
Solar wind V°Bsand | local geomagnetic MLP,and RBF Gleisner and
V2, LT, loca field DX, DY L undstedt, 00
geomag D X®, DY"
Solar wind n, V, Bz | none, weak or MLP Lundstedt et a., 00
strong aurora
foF2 foF2 1 hour ahead MLP Wintoft and
L undstedt, 99
AE, local time, foF2 1-24 hrsahead | MLP Wintoft and Cander,
seasonal information 00
foF2, Ap, F10.7 cm | 24 hrs ahead MLP Wintoft and
Cander, 99
SKp sat. anomaly MLP Wintoft and
Lundstedt., 00
Solar windn,V, Bz | GIC Elman, MLP Kronfeldt et al.,
2001

Table 1 shows predictions of space weather and effects based on KBN.
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Two workshops on “Al Applicationsin Solar-Terrestrial Physics’ have been held in
Lund, 1993 and 1997.

3. Prototype Overview

The Lund group has developed a very extensive prototype in Java, forecasting, warning,
informing about ongoing activity and explaining the space weather and effects. As
mentioned in the introduction, the prototype is based on ideas from the work of the Lund
Space Weather Model, all back in the late eighties.

i} 5 Weloame to bund Space Westher Farecast Service HE
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Figure 13. IL und Space Weather Forecast Service front web page. For this event ahalo
CME and an X class solar flare have occurred on the Sun (red light), awarning (yellow
light) for the CME to arrive a L1 isturned on and the conditions are quiet (green light) at
Earth.

3.1 Front Page

The stoplights show the activity at Sun, L1 and at Earth. The status is updated ever 5
minutes. This front web page shall give the user afast general overview of what is
happening and if actions should be taken. Whether activity isongoing (red), if thereis
warning for activity (yellow) or if it'squiet (green) at the Sun at L1 or at Earth. The latest
SOHO solar images are available by clicking on the Sun.

3.2 User Guide
An introduction to what space weather isand which effectsit can causeisgiveninthe

User Guide frame. Both avisual dictionary and glossary is available. The User Guide
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also contains information about what a specific user (Public and Science Tourists,
Scientists, Satellite Launch and Operators, Space Agencies (Man in Space), Aircrews,
Communication Operators and Power System Operators) can learn from the Lund Space

Weather Forecast Service.

SUN

+ The stoplight shows red if a halo corona mass
ejection, proton event, Z-ray flare or a coronal
hiole grving & fast solar wind stream has
ocourred.

» The stop light show wellow if high solar
actrity is forecasted 1-3 davs ahead.

+ The stoplight is green if' it's guiet or 12-14
days ahead,

L1

+ The stoplight shows red if'a halo ChIE ora
fast solar wind has reached L1.

+ The stoplight shows sellovwr if 4 halo CWE or
a fast solar wind strearn is forecasted to arrbe
within 1-3 days, Antval tire is estiraated.

+ The stoplight shows green if' it's quiet.

EARTH

+ The stoplight shows red if a proton event ora
geormagretic stonm is ongoing.

+ The stoplight shows vellow ifKp = 4.5 1=
forecasted 3 hours ahead, or Dst=-100 one hours
ahead or AE=500 one hour ahead or satellite
anornalies 1-3 hours.

+ The stoplight shows green if'it's quist.

Satellite Operator

Solar Radiation Storms

Exireme (fhux level of ==10 WeV particles) 10%: Loss of some satellites,
ety inpacts canse loss of control, serious noise in image data, star
trackers unable to locate sources, pernant darage to solar panels.
Severe (10%): Iemory device problems, noise in imaging systems, star-
trackers pause orientation problems, and solar panels degraded.

Sirong [ Likely single-event upsetss, noise in iaging systems,
pernanent darnage to exposed componentsidetectors, and decrease of
solar patel currents.

Moderate { 10%): Infrequent single-event upsets.

Minor (107 Mo problames.

Geomagnetic Storms

Exireme (Fp = 5): Extenstve surface charging, problerns with
oriertation, uplinkidownlink and tracking satellites.

Severe (}p = 9- or 8): Experience surface charging and tracking
problerns, onentation probleme need corrections.

Strong (Fp = T Surface charging on satellite components, increased
drag on satellite, and orentation problems and corrections.

Moderate (Ep = 6): Correctrve actions required by ground cortrol,
chatges i drag affect othit predictions.

Minor (Kp = 5): Iinor rapact on satellite operations .

Latest Info

Grves plots and values.

Lund Space Weather Forecast Service

Figure 14. The User Guide page for satellite operators.

3.3 Sun Stoplight Applet
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Figure 15. The Sun Stoplight applet is shown.
3.3.1 Nowcasts- red/green light
X-ray solar flares
Datafrom GOES isavailablein real-time for the database. The stoplight turnsred if a

major X-ray flare occurs. No warning or forecast of flaresisimplemented. As earlier
mentioned forecasts have been developed, e.g. Bradshaw et al., 1989.

Proton events
Datafrom GOES isavailable in reatime for the database. The stoplight turnsred if a
proton event has taken place. No warnings or forecasts is implemented. As earlier
mentioned, forecasts have been developed, e.g. by Gabriel et a., 2000.

Halo coronal mass g ections
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Information about the latest halo CME isreceived as an e mail from Simon Plunkett at
GSFC/NASA. Thisinformation is based on observations with EIT and LASCO
instrument on board SOHO. If ahalo CME has occurred then the stoplight turns red.

A relationship given by Gopalswamy et a., (2000) between theinitial speed of the halo
CME and the arrival time of the CME at Earth, has been implemented in Javafor the
prototype. The average acceleration is related to the initial speed according to
Gopaswamy as: a= 1.41 — 0.003u, where ais the acceleration in m/s* and u the initial
CME speed in km/s. Fast CMEs (u>405 km/s) are decelerated and slow CME (u<405
km/s) are accelerated. The arrival time can then simply be derived from s = ut + 1/2at?,
where sis distance traveled. The velocity of the CME when it has reached Earth is
calculated fromv =u + at.

The estimated arrival time and speed is available as latest info. These estimates are a'so
used to set awarning, yellow light, on the L1 stoplight. They are not used as input to
forecast models for the Earth stoplight. The forecasts are not accurate enough.

High speed plasma streams from coronal holes

Several methods are available, giving information about high speed plasma streams, i.e
the fast solar wind from coronal holes at L 1. The prototype tells us whether or not aHigh
Speed Plasma Stream (HSPS) (Lindblad et al., 1989) will take place 1-3 days ahead.

Using the photospehric and coronal magnetic fields as input (computed from solar
magnetograms either observed by MDI on board SOHO or observed by e.g. Wilcox
Observatory (WSO0)), the solar wind can be derived and forecasted (Figure 1) (Wintoft
and Lundstedt, 1999). To work in real-time we need real-time magnetograms. WSO
offers daily magnetogram plots. MDI also offers magnetograms.

A relationship between the solar source surface magnetic field strength and the solar wind
velocity was found by Hoeksema (1984). For it to work in real-time it requires real-time
magnetograms and that the source surface magnetic field is computed.

Various rel ations between the distance of the projected Earth on the Sun to the
heliospheric current sheet and the solar wind velocity have been found (e.g. V (km/s)=408
+473sin’l by Hakamado & Munakata). For that to work in real-time we need real-time
synoptic charts of the source surface. Updated M DI synoptic charts of the photospheric
field are available. Otherwise synoptic charts of source surface from last rotation are
availablei.e. 27 days earlier. The distance can however be hard to define at times of high
solar activity when the current sheet is very warped.

Bartels diagrams of solar mean field data can give a probability of occurrence of high
speed plasma streams (L undstedt and Hoeksema, 1992). It’ s based on recurrency and
works for stable magnetic sector structures. Slow solar wind occurs at sector boundaries
and then increases. Daily mean field data has been available from WSO at Stanford and
from MDI on board SOHO.
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A relationship between the size and position of a coronal hole, observed with the X-ray
Y ohkoh satellite, and the solar wind velocity has been found by (Sapporo). These results
are however preliminary.

Real-time solar wind data is available from spacecraft ACE and SOHO. A neura network
can learn from earlier rotation velocity profiles, last days velocity profiles and from that
forecast the velocity 1-3 days ahead. From that it can be concluded whether or not a high
speed solar wind will reached L1 1-3 days ahead. At thisfirst stage we have chosen the
last approach to include solar wind speed stream information for the prototype. A more
advanced method will later be included, based on our earlier networks using WSO
magnetograms.

Green light means quiet conditions
3.3.2 Forecasts—yellow light

Solar activity 7-14 days ahead
Solar MDI images, derived at Stanford, about the far side quiet or high activity isnow
used for the first time for warnings. Using these images we can warn for quiet/high
activity times 7-14 days ahead.

Sept. 21, 2001

L
1

.! =
Far=ide Eatthzide
Figure 16 shows solar activity on Earth and farside, derived from MDI data.
Solar activity 1-3 days ahead
We have aso included forecasts and warnings of solar activity 1-3 days ahead from the
Space Environment Center in Boulder in the prototype. These forecasts will later be

replaced with warnings and forecasts from |RF-Lund based on SOHO/MDI solar
magnetic field data.
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Figure 17 shows a SOHO/MDI solar magnetogram for the very active region AR9393 on
March 29, 2000. This region produced an X20 solar flare on Aril 2, 2001.

3.4 L1 Stoplight Applet
3.4.1 Nowcasts—red/green light

The L1 stoplight turns red when ahalo CME, shock or afast solar wind has arrived
atL1.

Green light means quiet conditions.
3.4.2 Forecasts—yellow light

Yellow light is shown for warnings of ahalo CME or afast solar wind coming 1-3
days ahead.
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Figure 18. The L1 Stoplight applet is shown.

3.5 Earth Stoplight Applet
3.5.1 Nowcasts—red/green light
Geomagnetic storm

The Earth stoplight turnsred if a geomagnetic storm is ongoing (Dst [}+50 for at |east two
hours, derived from neural network nowcasting)

Communication condition

The Earth stoplight turnsred if the communication conditions are disturbed, described by
foF2.

Geomagnetically induced current

The Earth stoplight turns red if an enhanced geomagnetically induced current is
measured. Green light means quiet conditions.
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Figure 19. The Earth Stopllght applet IS shown

3.5.2 Forecasts — yellow light

Satellite anomalies

A satellite anomaly is forecasted. This prediction model based on neural networks was
developed within SAAPS (Wintoft, 2001).

Satellitedrag
Forecast models will be implemented |ater.

Communication condition
Forecast models will be implemented |ater.

Geomagnetic storm

Geomagnetic storms are forecasted, indicated by a Kp (>4.5), Dst (J-50nT) or an AE
(>500nT) value. These models are well tested and described in many publications
(Lundstedt, 1999). By clicking on “latest info” we aso inform whether or not Dst
minimum will occur within 5 hours.
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Geomagnetic induced current (GIC)
(GIC) isforecasted. Thisis arecent developed model based on real-time solar wind data
and measured GIC values. Thework is carried out in collaboration with a Swedish power
company. Real-time GIC datais not available to public.

Aurora
Auroraisforecasted. The probability for no, weak or strong aurorais given. Presently,
forecasts are offered for Northern Scandinavia.
For cats for lower latitudes are planned.

Green light isagain on if the conditions are quiet.

3.4 Plot tools

All the stoplight applets include tools for plots and data studies. The plot tools have also
been developed in Java.

L Welcomee to Lumd Space Weather Ferecast Service

LUND SPACE WEATHEE FORECAST SERVICE
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Figure 20. Example of a plot showing near side and far side solar activity.

A plot of the magnetic flux intensity (pixel intensity) of the near and solar far side is
shown in Figure 20. These values are used as input for neural networks to forecast
high/low solar activity 7-14 days ahead.

The plot tools have all common functions and can plot all the data available to the
prototype.

W lcomne ty Land Space Weather Forecast Servioe

LUND SPACE WEATHER FORECAST SERVICE

USER GUIDE
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LASCI Tinie of Laiest Infis WARRIG
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~ Armival Time af Halo OdE =]

Laess nfin

Figure21. Illustrate Latest Info function.

3.5 Database

The prototype is connected to avery extended database, also written in Java, which is
updated in real-time. Within the ESA SAAPS projects a database was devel oped in Java.
The database includes OMNI solar wind data 1982-1999, ACE solar wind data, GOES-8
and 10 eectron flux and proton flux and Kp. This data base has now been extensively
expanded to serve the prototype with real-time and historical data.

3.6 DEM O functions
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The prototype has two demo functions. The user can test amodel of the solar wind-
magnetosphere coupling. The model uses as input the solar wind data and as output the
geomagnetic storm index Dst. The mapping between the input and output vector is found
using an Elman recurrent neural network. The user can study selected events or give own
input values. The user can also create a prototype event by clicking on the demo button
on each stoplight page. Select e.g. a CME event and watch how the stoplights turn on.

3.6.1 Test a Dst prediction model

Sugiura (1964) introduced an index Dst, based on the hourly values of the average global
variation of the low-latitude H component. The largest geomagnetic storms show three
phases, the initial phase (sudden increase of Dst due to sudden increase of ram pressure

cause by the arrival of interplanetary shock), the main phase (decrease of Dst due to
increased ring current) and the recovery phase (Dst return to normal value) (Figure 6).

f_\\-t—l -5 Days ——

Pressure g

Figure 22. A strong geomagnetic storm’s all phases.

Theory

A geomagnetic storm is however principally defined by cregi ng an enhanced ring current
(Gonzalez et a.,1994). Dst therefore often replaced by Dst  corrected for the

magnetopatise current. Burton et al. (1975) gave asimple expression for the variation of
Dst asthe energy balance for the ring current.

dDZt—t*(t):Q(t)- Dst (t)/t (1)

Informula (1) Q(t) istheinjection term and t the decay time. The loss rate parameter is
however poorly known and is also continuously changing during the storm.

Dst (t)=¢e"" gDst* (0)29((2€™" dzg )



The formal solution of equation (1) is given by (2).

A second order differential equation for Dst was given by Vassiliadis et al. (1996).

d2Dst"
dt?

+ al(Dst*)dDTtSt +a,(Dst" )Dst = b (VB,,Dst )VB, (3)

Equation (3) is of the form of a damped harmonic oscillator which is driven by VB, with

the coupling strength b . The dissipation rate a; and restoring force ao depend on Dst
and the coupling strength on VB, and Dst .

The range of observed Dst is approximately +100nT to —-600nT.

Gonzalez and Tsurutani (1987) refers to intense geomagnetic storms with peak Dst values
of less than —100nT, which occurred when B, was less than —10nT and lasted (D) in more
than three hours. This relation was found valid in 80% of times for the ISEE interval.
Moderate storms were defined in the same way but for Dst -50nT, Bz -5nT and lasted
more than two hours. Small storms (typical substorms) Dst —30nT, B, -3 nT and lasted
more than one hour. For the years 1976-1986 the median Dst was between —20nT and —
10nT. Thus negative Dst values do not necessarily represent storm-level conditions.

Geomagnetic Storm Dst (nT) B, (nT) D (hours)
Intense -2000Dst<100 -10 3
Moderate -1000Dst<-50 -5 2
Small -500Dst<-30 -3 1

Table 2. B, and D threshold for storms at 80% occurrence level (ISEE 3 Interval, August
1978 to December 1979).

As can be seen the interplanetary southward magnetic field component B, plays an
important role. However, even By can be important. It's a so worth mentioning that there
are many interplanetary features that can cause a southward interplanetary magnetic field
component. They could be divided into sheath fields (shocked southward fields, shocked
heliospheric current sheets, turbulence, waves, draped magnetic fields) and driver gas
fields (magnetic clouds, fluxrope and magnetic tongue).

Storm Intensity Kp value Dst value Shock Interplanetary
(nT) Association CME
Association
Big 8 Kp9 Dst (I- 200 100% 90%

30




Intense Kp=7 -2000]Dst<-100 80% 80%

Moderate SUKpl6 -10000Dst<-50 40% 40%

Table 3 shows the relation between geomagnetic indices Kp and Dst for storm types.
The statistics are valid for August 1978 — October 1982 i.e. during solar maximum
period. During declining phases dominate high speed plasma streams from coronal holes.

The forecast model the user can test is aforecast model of the Dst variation, based on
trained recurrent ElIman neural network (appendix). The neural network has learned the
variation of the geomagnetic activity only from the variation of the solar wind variation.
The recurrent neural network learns both the solar wind magnetosphere coupling and the
recovery phase by itself. Three independent data sets are used for the training (training
set), optimization (validation set), and testing (test set) of the neural network. During
training, the weights of the network are found from the error backpropagation algorithm.
Severa different networks are trained where the type of inputs and number of hidden
units are varied. Then the validation set is used to determine the optimal network. Finally,
the optimal network is tested on the test set to determine how well it will work for new
data.

The differential equation governing the evolution of Dst are solved implicity by the
Elman neural network model.

DSi(t+T) = (W, tanh(w, Q) = & WY,0) ()

&L tgs 0
vj(t):tanhga w,Q(t- k+D+ @ w,\ (t+1), (5)
=1 k=t ,+1 H

Here f() isalinear transfer function, Wj; are the connection weights between the hidden
and output layers, wj, are the connection weights between the input and hidden layers,
V; (t) isthe output of hidden unitj at timet, S; isthe number of hidden units, Q(t) stands
for the coupling function at timet, and t,, is length of the delay line.

Using asinput n, V, B, Bs(=-B,if B,<0and 0if B,>=0) Wu and Lundstedt (1997)
managed to obtain the values given in table 3 for the correlation coefficient between the
predicted Dst and observed for 1-8 hours ahead, for ARV (average relative variance, i.e.
the mean squared error normalized by the variance of the data) and RM SE (root-mean
square error).

Hours ahead Correlation coeff. ARV RMSE (nT)

1 0.92 0.15 13.8

31




2 0.90 0.18 153
3 0.88 0.23 16.9
4 0.86 0.26 184
5 0.84 0.29 195
6 0.82 0.33 20.7
7 0.80 0.36 21.7
8 0.77 0.40 23.1

Table 4. Dst Prediction accuracy for 1 to 8 hours ahead. Even better prediction values for
1 hour ahead are shown in Figure 7, namely 0.94 and 11.6 nT.

Geomagnetic storms are very accurately predicted 1-2 hours ahead and predictions 3-5
hours ahead are useful in practical operation according to their acceptable accuracy.

To predict the duration of the geomagnetic storm we also need a model of the solar wind
variation. As mentioned earlier there are many solar wind features that can cause a storm.
The dominating features also differ during the solar cycle. During solar maximum
interplanetary CMEs (ICME) dominates. Much attention has been paid on magnetic
clouds, even if they occur only in one out of six fast ICME/driver gas events. During the
declining phase coronal holes have dominant effect on interplanetary medium. High
speed plasma streams from coronal holes can create intense magnetic fields if the streams
interact with streams of lower speeds. Although it is clear that there are more large Dst
events during solar maximum than solar minimum, that is not the case for auroral zone
(AE) activity. Alfven waves associated with coronal holes produce continuous substorms
and increased AE index. Substorms are related to geomagnetic induced currents and
therefore of importance for the effects on power systems.

From the above it’s clear that the solar/solar wind impact on Earth atmosphere is much
more complex than a question of occurrence of CME magnetic clouds. In order to
develop a useful forecast service we therefore must include all kind of events caused by
the different solar wind features. The different solar wind features during a solar cycle
have been studied (Wintoft and L undstedt, 1998) using a SOM neural network. Such a
network could have classified the features and been used to select the proper network
modeling the solar wind magnetosphere coupling.

Test the model

A test forecast model of Dst has been developed for the prototype. The user can study
selected events or give values for the solar wind velocity V, density and southward
magnetic field component B, or By. The neural network is then forecasting the Dst value
1 hour ahead. The result and solar wind input values can be plotted (Figure 23)

Again no Dst value asinput is given asis done for other models e.g. those based on
Burton et al.,1975.
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Figure 23. The forecast model shows a prediction of Dst 1 hour ahead for the selected
main phase event May 2, 1998. The observed Dst value for minimum was —205 nT. Our
model predicts—212 nT.

Dst is forecasted one hour ahead for the three phases of a geomagnetic storm. The solar
wind data values used as input are shown and can aso be plotted (Figure 24). The user
can change the input and then make a new forecast and now see what changes that caused
in the Dst value. The user can also create atime series of input values from scratch and
see what Dst that will result in.
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Netscape: Dst Plot
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Figure 24 shows the solar wind data (n, V, By and Bz) and the Dst value for the May

main phase event.

3.6.2 Create a prototype event

The DEMO button function gives the user the possibility to create a specific event.

Figure 25. The demo function illustrated.



Inthis case ahalo CME has arrived at L1 and awarning for ahalo CME is aso turned

on.

3.7 Case study
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Figure 26. A web site http://www.irfl.lu.se/swprogint/sel ectedevents.html dedicated to

the selected cases.

Cases were selected to show how well the prototype worked for interesting events. Both
times of halo CMEs and one coronal hole caused high speed plasma stream were
selected. Table 5 shows the observed quantities and tables 6-8 show the predicted
quantities by the prototype.

The event Jan 6-11 has been studied in detail by the Lund group (Wu, Lundstedt, 1998).
The forecast of Dst worked very well. It was also found that the optimal combination of
different solar wind parameters used as inputs outperform the single optimal coupling

functionsin terms of prediction accuracy.
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Figure 27 shows how well our EIman neural network forecasted Dst one hour ahead
for the Jan 6-11 event. The correlation coefficient was as high as 0.94 and the RMSE
only 11.6 nT. The inputs to the network weren, V, B, By and B.

The Sun stoplight shows forecasts of both quiet and activity times from MDI data 7-13
days in advance and forecasts of solar activity 1-3 days (SEC forecasts). It also shows
nowecasts of x-ray solar flare flux, proton flux and if ahalo CME has occurred. The
messages about halo CMEs events will be replaced by automatic detection methods
developed by us. Only the forecasts of SEC of solar activity can be shown for the selected
events. The results are shown in table 5. As earlier also mentioned, we are planning to
replace these forecasts with forecasts devel oped by us and based on KBN.

The L1 stoplight shows forecasts of arrival of halo CMEs and fast solar wind at L 1.
It also shows nowcasts of whether or not ahalo CME and fast solar wind have arrived at
L1. The forecasts for the events can be tested and the results are shown in table 6.

Finally the Earth stoplight shows forecasts of satellite anomalies, satellite drags (not
implemented), plasma frequency foF2, Kp, Dst, AE, GIC and aurora. It aso shows
nowcasts of GIC, geomagnetic storms (Dst[-50), and plasma frequency. The forecasts
can be tested for the events and the results are shown in table 8.
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Date V(Sun) V(1AU) T(1AU) Dst(min)
23/174 - 740 km/s 2d, 6h -66 nT
6/1/97 200 km/s 550 km/s 3d, 12d -78 nT
4/11/97 830 km/s 450 km/s 2d, 16h -110 nT
20/4/98 1640 km/s 500 km/s 3d, 10h -69 nT
2/5/98 1040 km/s 850 km/s 1d, 12h -205 nT
4/4/00 1000 km/s 600 km/s 2d, Oh -321nT
Table 5. Observed Quantities for the selected events. T isthe arrival time of the solar
feature.
Date Solar activity Solar activity
1-3 days ahead 7-14 days ahead
23/174 SEC NaN
6/1/97 SEC NaN
4/11/97 SEC NaN
20/4/98 SEC NaN
2/5/98 SEC NaN
4/4/00 SEC NaN

Table 6. Forecasted Quantities at Sun. Far side solar images started to be available
August 7 2000 i.e. after time of selected events. The solar activity forecasts 1-3 days from
SEC will be replaced by forecasts derived at Lund.

Date Halo CME arrival Halo CME Fast coronal hole
aLl(T-1h) velocity at L1 solar wind at L1 one

day ahead

23/1/74 - - 675 km/s

6/1/97 4d, 13h 480 km/s -

4/11/97 2d, 6h 530 km/s -

20/4/98 1d, 1h 1230 km/s -

2/5/98 1d, 18h 690 km/s -

4/4/00 1d, 20h 660 km/s -

Table 7. Forecasted Quantitiesat L1

The prediction of the arrival time of the halo CME isbased on the implementation of the
Golpaswamy’ s methods (section 3.4.1 ¢). The prediction of the arrival time of the fast
solar wind is based on a neural network model. As can be seen the forecasts of the arrival
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time of the halo CMEs based on Gopalswamy et a., (2000) are only acceptable for the
events 2/5/98 and 4/4/00. For the January 97 event the arrival time differs from the
observed with more than one day. For the 20/4 98 event the velocity valueistotally
wrong.

Date Dst (min) Dst Satellite Disturbed HF GIC

1 hr ahead 2,345 hrs anomaly | communication | lhr
ahead withinaday | conditions ahead
1-6 hrs ahead
23/174 -78nT 85% NaN
6/1/97 -113nT 80% NaN
4/11/97 -81nT 80% NaN
20/4/98 -62 nT 78% NaN
2/5/98 -212nT 85% NaN
4/4/00 -288 nT 82%

Table 8. Forecasted Quantities at Earth. Percentage for occurrence of satellite anomaly is
given. GICs forecasts are based on ACE data and therefore only available for last event.

We do not use the predictions of V, based on Gopalswamy et al., asinput for our
predictions for Earth. These predictions are instead used as for warnings and alerts for

L1. The predictions are not good enough to be used as inputs to forecasts for Earth. The
predictions of Dst are based on devel oped Elman neural networks, which model the solar
wind magnetosphere coupling. Asinput solar wind datais only used. Predictions 2-5 hrs
ahead of Dst also give usthe possibility to forecasts whether or not the Dst minimum will
occur within 5 hours. Predictions of Dst min 1 hour ahead have been done with the Elman
neural network used for demo. Predictions 2-5 hrs ahead however, requires longer time
series of solar wind data as input which is not suitable for demo. These predictions are
therefore made with more advanced neural networks.

3.8 Extension of Prototype

3.8.1 Proceduresfor updating the Space Weather Prototype 1

A discussion now follows about methods for updating prediction models with new data
sets, new research results and new space weather user requirements.

Methods exist which takes into account feedbacks from user predictions.

The software package of Prototype 1 iswritten in Java. It consists of modules. Each
module carries out one task described in the flowcharts of the prototype 1

If the module stask is to forecast the space weather condition or the effects of space
weather, then the module consists of neural networks that have been trained to forecast
the condition or effects.

3.8.2 Proceduresfor updating predictions with new data and results
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With new data sets

To update the predictions with a new data set, we have to retrain the neural network. If
the input variables are the same then the topology of the neural network doesn’t have to
be changed.

With new resear ch results:

Here we have to consider how the new research results can be described. The new results
can be coded into the neural network. If that is the case, then the topology has to be
changed. The neural network has then to be retrained. It could also be that we have to
include a new module in our prototype. The new module will then consist of new trained
neural networks.

With new space weather user requirements:

Here it depends on what the new user requirements are. It could be that the new
requirements could be taken care of by another module already existing in the prototype,
but not used earlier by the specific user. However it could also be that a new module has
to be developed and new neural networks trained.

3.8.3 Defining methods for taking into account feedback from users

We offer forecasts of aurorato science tourism company “Kiruna Vetenskapsturism” in
Kiruna. These forecasts are based on trained neural networks with input data ACE solar
wind data and events of aurora seen in Kirunaregion. These predictions can be improved
by using more advanced neural network methods. However, we can aso retrain the
neural networks by adjusting the weights so the neural network will predict correctly the
events reported by new observers. We have therefore asked pilots and the personal at
airport in Kirunato inform us about whether they actually observed or not observed an
aurorawhen we predicted it.

4, Summary

We have developed a real-time forecast service of space weather and effects using
knowledge-based neurocomputing (KBN) prototype. The prototype is connected to a data
server and is updated every 20 minutes. The user can also manually update the prototype.
A real-time forecast service is agreat challenge. Datais often missing or bad.

Sinceit’s based on KBN the prototype is easy to improve with new models, data and
information. The prototype iswritten in Java and is therefore running in any environment.
We forecast both the space weather and effects. Much information is given to the user so
he or she understands what specifics the prototype can offer him or her. We do not think
there exist today a good enough model for the solar wind, used together with a solar
wind-magnetosphere coupling model. There are to many different solar wind features and
first of all we do not know how the solar wind Bz varies more that a couple hours ahead.
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The solar information can be used for warnings and alerts, but not as forecasts for users.
However, the solar wind-magnetopshere and solar wind-effects models are accurate
enough to produce useful forecasts of the space weather and effects hours ahead. The
forecasts are heavily dependent on a L1 monitor such as ACE. A European L1 monitor is
therefore very much wanted. The user can test our Dst forecast model as an example of
forecast models. The neural network model is trained on only solar wind data. The user
can herewith study the solar wind magnetosphere coupling, learn how the solar wind
conditions can influence Earth’ s magnetosphere and ionosphere, and also become
familiar with recurrent neural networks.

Acronyms

ACE = Advanced Composite Explorer

GIC = Geomagnetic Induced Currents

HSPS = High speed plasma stream

ICME= Interplanetary Coronal Mass Ejection

IHS = Intelligent Hybrid Systems

KBN = Knowledge-Based Neural Computing

MLP = Multi Layer Perceptron neural network

SAAPS = Satellite Anomaly Analysis Prediction System
SOHO= SOlar Heliospheric Observatory

SOM = Self Organizing Maps

SPEE = Study of Plasma energetic electron Environment and Effects
TDN = Time delay neural network
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Appendix
Al Html links

A1.1 Forecast input data - http://www.irfl.lu.se/HeliosHome/spwdata.html
A1.2 What is space weather - http://www.irfl.lu.se/HeliosHome/spacew?2.html
A1.3 A glossary of space weather terms -
http://www.irfl.lu.se/HeliosHome/spacew9.html

A2 Most Common neural networks

A2.1 Multi-layer error-back-propagation (MLBP)
A2.2 Elman recurrent neural network

A2.3 Self Organized Map (SOM)

A2.4 Radial Basis Function (RBF) network
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Multi-layer error-back-propagation (MLBP)

af:gi(zm;'gj(zkwjkgr))
J

Back-propagation learning : AW.(¢+1) =—1 OE +0LAW (1)

2
Error measure : E Z%E (d'—al)

Figure 28. A multilayer error-backpropagation network or a multilayer perceptron (MLP)
network.

The above feed-forward MLP network learns to map an input vector to an output vector
from examples with known answers. The network consists of one input, one hidden and
one output layer. The hidden layer creates a representation of the features in the input
vector x. The output a ™ of asingle hidden-layer neural network with an input pattern
mis given in Figure 17, where w;; and Wi are the weights between the input and hidden
layer and between the hidden and output layer respectively. The weights are updated

according to DWj; . The training is stopped when the error measure has reached alow
enough level.
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input Layer Hidden [ayer Crrtpt Layer

Figure 29. An Elman recurrent neural network.

Elman recurrent neural networks are two-layer backpropagation networks with the
addition of afeedback connection from the hidden layer to input layer (context units).
This feedback path allows EIman networks to learn to recognize and generate temporal
patterns, as well as spatial patterns. See also section 3.3.
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Self Organized Map (SOM)

aij.t_{ 1 if =1

0 if =1

hi=Yw. £  hizh foralli
J

Kohonen learning : Aw F= 'l'li"i(f;f‘()(E'.JJ-'t - W)

k- 1l

Neighbothood function:  A(,i*) = PO

Figure 30. A self-organized map (SOM) network.
An unsupervised neural network, the self-organized map neural network (SOM) clusters

similar input patterns on amap. The net input to anode is given by h;™. The learning rule
isgiven by D .
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Radial Basis Function Network

INPUTS HIDDEN LAYER ouTrurT

Figure 31. A radial basisfunction (RBF) network.

A radial-basis function network is again a network consisting of an input, a hidden layer
and an output layer. Here the learning is carried out in two steps, first unsupervised and
then through supervised learning. The input vector is x and the output isy.

A3 Java programsand applets developed



Herefollows alist of Java programs, applets, classes developed to illustrate our approach.

UpdateCM EDatabase - This class reads emails for a specific user at email server
"pop3:/www.irfl.lu.se", and writes the coded part of each CME email to atext
file. The coded information of thistext file is then converted to CME objects,
which are stored in the database.

UCMEO - Thisclass contains the specific structure of the CME objects. Methods
of read and write CME-data are found in this class.

UCMEODB - Thisclassisthe database interface for storing/retrieving objects of
the class UCMEO.

CMEmodel - Thisclass calculates travel time and arrival time for a given CME.

UpdateGl CDatabase - This class reads a text file that contain predictions of
GICs. Since thistext file is updated every tenth minute, a comparison using the
most recent received GIC forecast is made disabling multiple storing of GIC
objects of the same forecast date. Finally, the datais stored in the database.

GIC - This class contains the specific structure of the GIC objects. Methods of
read and write GIC-data are found in this class.

GICDB - Thisclassisthe database interface for storing/retrieving objects of
the class GIC.

L atestK pData - This class obtains the latest Kp forecast from the server at
"http://sol.irfl.lu.se", and stores the data in the database.

Kp - This class contains the specific structure of the Kp objects. Methods of
read and write Kp-data are found in this class.

KpDB - This class is the database interface for storing/retrieving objects of
the class Kp.

LatestGOESO8part - This class reads the latest GOESO8 particle data obtained
from the Internet at "ftp://ftp.sec.noaa.gov/pub/lists/particle/G8part_5m.txt".
The datais updated every fifth minutes. after the datais obtained, it is stored

in the database.

GOESO8part - This class contains the specific structure of the GOESO8part
objects. Methods of read and write GOESO8part-data are found in this class.

GOESO8partDB - This class is the database interface for storing/retrieving
objects of the class GOESO8part.
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Similar as the above three classes, classes of LatestGOESO8xray, GOES08xray,
GOESO8xrayDB, LatestGOES10part, GOES10part, GOES10partDB,

L atestGOES10xray,

GOES10xray and GOES10xrayDB have also been made.

Stoplight - This class collects space weather input data, calculates current
status and makes a string showing the explanation for the current status
(cause and effects). The status and explanation are made available to applets
viaremote method invocation, RMI.

StoplightApplet - This class, the Applet, uses remote methods to obtain
information from the Stoplight server. This applet shows the stoplight and based
on the current status received from the server, lights the green, yellow or red
light.

StoplightExplanationApplet - This class, the Applet, shows the explanation graph.
The applet first asks the Stoplight server about the current status and then,

based on the received information, colours graphic elements and displays the text
as appropriate.

There are also a number of classes made not mentioned above that handles, supports
and enables the remote methods, graphical and explanatory details of the prototype.

A more thorough and technical description of the Javaimplementation isgivenin
(Hasanov and Lundstedt, 2001).
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